Cargando…

Genome flux and stasis in a five millennium transect of European prehistory

The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Ag...

Descripción completa

Detalles Bibliográficos
Autores principales: Gamba, Cristina, Jones, Eppie R., Teasdale, Matthew D., McLaughlin, Russell L., Gonzalez-Fortes, Gloria, Mattiangeli, Valeria, Domboróczki, László, Kővári, Ivett, Pap, Ildikó, Anders, Alexandra, Whittle, Alasdair, Dani, János, Raczky, Pál, Higham, Thomas F. G., Hofreiter, Michael, Bradley, Daniel G, Pinhasi, Ron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218962/
https://www.ncbi.nlm.nih.gov/pubmed/25334030
http://dx.doi.org/10.1038/ncomms6257
Descripción
Sumario:The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (~22 × ) and seven to ~1 × coverage, to investigate the impact of these on Europe’s genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence.