Cargando…

cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity

BACKGROUND: Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of ‘Sour pummelo’ (Citrus grandis) and ‘Xuegan’ (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H(3)BO(3) in a complete nutrient solution...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Peng, Qi, Yi-Ping, Yang, Lin-Tong, Ye, Xin, Jiang, Huan-Xin, Huang, Jing-Hao, Chen, Li-Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219002/
https://www.ncbi.nlm.nih.gov/pubmed/25348611
http://dx.doi.org/10.1186/s12870-014-0284-5
Descripción
Sumario:BACKGROUND: Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of ‘Sour pummelo’ (Citrus grandis) and ‘Xuegan’ (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H(3)BO(3) in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. RESULTS: B-toxicity-induced changes in seedlings growth, leaf CO(2) assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. CONCLUSIONS: C. sinensis leaves could tolerate higher level of B than C. grandis ones, thus improving the B-tolerance of C. sinensis plants. Our findings reveal some novel mechanisms on the tolerance of plants to B-toxicity at the gene expression level. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0284-5) contains supplementary material, which is available to authorized users.