Cargando…
A High-Order Statistical Tensor Based Algorithm for Anomaly Detection in Hyperspectral Imagery
Recently, high-order statistics have received more and more interest in the field of hyperspectral anomaly detection. However, most of the existing high-order statistics based anomaly detection methods require stepwise iterations since they are the direct applications of blind source separation. Mor...
Autores principales: | Geng, Xiurui, Sun, Kang, Ji, Luyan, Zhao, Yongchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219173/ https://www.ncbi.nlm.nih.gov/pubmed/25366706 http://dx.doi.org/10.1038/srep06869 |
Ejemplares similares
-
Progressive Line Processing of Kernel RX Anomaly Detection Algorithm for Hyperspectral Imagery
por: Zhao, Chunhui, et al.
Publicado: (2017) -
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023) -
Joint Skewness and Its Application in Unsupervised Band Selection for Small Target Detection
por: Geng, Xiurui, et al.
Publicado: (2015) -
Hierarchical Sub-Pixel Anomaly Detection Framework for Hyperspectral Imagery
por: Wang, Wenzheng, et al.
Publicado: (2018) -
Structured Background Modeling for Hyperspectral Anomaly Detection
por: Li, Fei, et al.
Publicado: (2018)