Cargando…
Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease
Epigenetic events are differentially expressed in the lungs and airways of patients with chronic obstructive pulmonary disease (COPD). Moreover, epigenetic mechanisms are involved in the skeletal (peripheral) muscle dysfunction of COPD patients. Whether epigenetic events may also regulate respirator...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219759/ https://www.ncbi.nlm.nih.gov/pubmed/25369292 http://dx.doi.org/10.1371/journal.pone.0111514 |
_version_ | 1782342634278223872 |
---|---|
author | Puig-Vilanova, Ester Aguiló, Rafael Rodríguez-Fuster, Alberto Martínez-Llorens, Juana Gea, Joaquim Barreiro, Esther |
author_facet | Puig-Vilanova, Ester Aguiló, Rafael Rodríguez-Fuster, Alberto Martínez-Llorens, Juana Gea, Joaquim Barreiro, Esther |
author_sort | Puig-Vilanova, Ester |
collection | PubMed |
description | Epigenetic events are differentially expressed in the lungs and airways of patients with chronic obstructive pulmonary disease (COPD). Moreover, epigenetic mechanisms are involved in the skeletal (peripheral) muscle dysfunction of COPD patients. Whether epigenetic events may also regulate respiratory muscle dysfunction in COPD remains unknown. We hypothesized that epigenetic mechanisms would be differentially expressed in the main inspiratory muscle (diaphragm) of patients with COPD of a wide range of disease severity compared to healthy controls. In diaphragm muscle specimens (thoracotomy due to lung localized neoplasms) of sedentary patients with mild-to-moderate and severe COPD, with preserved body composition, and sedentary healthy controls, expression of muscle-enriched microRNAs, histone acetyltransferases (HATs) and deacetylases (HDACs), total DNA methylation and protein acetylation, small ubiquitin-related modifier (SUMO) ligases, muscle-specific transcription factors, and muscle structure were explored. All subjects were also clinically evaluated: lung and muscle functions and exercise capacity. Compared to healthy controls, patients exhibited moderate airflow limitation and diffusion capacity, and reduced exercise tolerance and transdiaphragmatic strength. Moreover, in the diaphragm of the COPD patients, muscle-specific microRNA expression was downregulated, while HDAC4 and myocyte enhancer factor (MEF)2C protein levels were higher, and DNA methylation levels, muscle fiber types and sizes did not differ between patients and controls. In the main respiratory muscle of COPD patients with a wide range of disease severity and normal body composition, muscle-specific microRNAs were downregulated, while HDAC4 and MEF2C levels were upregulated. It is likely that these epigenetic events act as biological adaptive mechanisms to better overcome the continuous inspiratory loads of the respiratory system in COPD. These findings may offer novel therapeutic strategies to specifically target respiratory muscle dysfunction in patients with COPD. |
format | Online Article Text |
id | pubmed-4219759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42197592014-11-12 Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease Puig-Vilanova, Ester Aguiló, Rafael Rodríguez-Fuster, Alberto Martínez-Llorens, Juana Gea, Joaquim Barreiro, Esther PLoS One Research Article Epigenetic events are differentially expressed in the lungs and airways of patients with chronic obstructive pulmonary disease (COPD). Moreover, epigenetic mechanisms are involved in the skeletal (peripheral) muscle dysfunction of COPD patients. Whether epigenetic events may also regulate respiratory muscle dysfunction in COPD remains unknown. We hypothesized that epigenetic mechanisms would be differentially expressed in the main inspiratory muscle (diaphragm) of patients with COPD of a wide range of disease severity compared to healthy controls. In diaphragm muscle specimens (thoracotomy due to lung localized neoplasms) of sedentary patients with mild-to-moderate and severe COPD, with preserved body composition, and sedentary healthy controls, expression of muscle-enriched microRNAs, histone acetyltransferases (HATs) and deacetylases (HDACs), total DNA methylation and protein acetylation, small ubiquitin-related modifier (SUMO) ligases, muscle-specific transcription factors, and muscle structure were explored. All subjects were also clinically evaluated: lung and muscle functions and exercise capacity. Compared to healthy controls, patients exhibited moderate airflow limitation and diffusion capacity, and reduced exercise tolerance and transdiaphragmatic strength. Moreover, in the diaphragm of the COPD patients, muscle-specific microRNA expression was downregulated, while HDAC4 and myocyte enhancer factor (MEF)2C protein levels were higher, and DNA methylation levels, muscle fiber types and sizes did not differ between patients and controls. In the main respiratory muscle of COPD patients with a wide range of disease severity and normal body composition, muscle-specific microRNAs were downregulated, while HDAC4 and MEF2C levels were upregulated. It is likely that these epigenetic events act as biological adaptive mechanisms to better overcome the continuous inspiratory loads of the respiratory system in COPD. These findings may offer novel therapeutic strategies to specifically target respiratory muscle dysfunction in patients with COPD. Public Library of Science 2014-11-04 /pmc/articles/PMC4219759/ /pubmed/25369292 http://dx.doi.org/10.1371/journal.pone.0111514 Text en © 2014 Puig-Vilanova et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Puig-Vilanova, Ester Aguiló, Rafael Rodríguez-Fuster, Alberto Martínez-Llorens, Juana Gea, Joaquim Barreiro, Esther Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease |
title | Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease |
title_full | Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease |
title_fullStr | Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease |
title_full_unstemmed | Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease |
title_short | Epigenetic Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease |
title_sort | epigenetic mechanisms in respiratory muscle dysfunction of patients with chronic obstructive pulmonary disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219759/ https://www.ncbi.nlm.nih.gov/pubmed/25369292 http://dx.doi.org/10.1371/journal.pone.0111514 |
work_keys_str_mv | AT puigvilanovaester epigeneticmechanismsinrespiratorymuscledysfunctionofpatientswithchronicobstructivepulmonarydisease AT aguilorafael epigeneticmechanismsinrespiratorymuscledysfunctionofpatientswithchronicobstructivepulmonarydisease AT rodriguezfusteralberto epigeneticmechanismsinrespiratorymuscledysfunctionofpatientswithchronicobstructivepulmonarydisease AT martinezllorensjuana epigeneticmechanismsinrespiratorymuscledysfunctionofpatientswithchronicobstructivepulmonarydisease AT geajoaquim epigeneticmechanismsinrespiratorymuscledysfunctionofpatientswithchronicobstructivepulmonarydisease AT barreiroesther epigeneticmechanismsinrespiratorymuscledysfunctionofpatientswithchronicobstructivepulmonarydisease |