Cargando…
Re-building Daniell Cell with a Li-ion exchange Film
Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu(2+)-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-bu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220274/ https://www.ncbi.nlm.nih.gov/pubmed/25369833 http://dx.doi.org/10.1038/srep06916 |
Sumario: | Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu(2+)-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu(2+)-crossover between two electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capacity attenuation and self-discharge, and displays a theoretical energy density of 68.3 Wh kg(−1). It is more important that both electrodes of the battery are renewable, reusable, low toxicity and environmentally friendly. Owing to these advantages mentioned above, the re-built Daniell cell can be considered as a promising and green stationary power source for large-scale energy storage. |
---|