Cargando…
Modeled Behavior of Neuropathic Pain with Social Defect in Rats: A Preliminary Methodology Evaluation
BACKGROUND: Social defect and chronic pain are 2 major health problems and recent data has demonstrated that they generally exist concurrently. However, a powerful evaluation model on the behavioral change is lacking. This study was designed to evaluate the behavioral curves using a statistically mo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220587/ https://www.ncbi.nlm.nih.gov/pubmed/25348794 http://dx.doi.org/10.12659/MSMBR.892615 |
Sumario: | BACKGROUND: Social defect and chronic pain are 2 major health problems and recent data has demonstrated that they generally exist concurrently. However, a powerful evaluation model on the behavioral change is lacking. This study was designed to evaluate the behavioral curves using a statistically modeled trajectory analysis in neuropathic animals with or without social defect exposure. MATERIAL/METHODS: After approval by the institutional animal care committee, Sprague-Dawley rats were randomized into different interventional groups with 15 animals each. Sprague-Dawley rats underwent spared nerve injury (SNI) to establish the neuropathic pain model, of which the mechanical withdrawal threshold was measured using von Frey filaments for a period of 105 days. Otherwise, a modified version of the resident (Long-Evans rats)-intruder paradigm was applied to produce a social defect animal model through the elevated plus maze (EPM). After raw data collection, we modeled them into a powerful statistical effects analysis to build up the behavioral change tendency in single SNI or in combined SNI and social defect animals. RESULTS: The random and fixed effects analyses of the pain behavior after SNI were successfully modeled and demonstrated a gradient recovery tendency during the 15-week post-injury observational period. Correspondingly, SNI rats exhibited increased social defected symptoms, as indicated by the increased anxiety-like behavior in the EPM test. In addition, continuous social defect stress for 5 days or 10 days, respectively, partially attenuated and exacerbated SNI-induced allodynia in both random and fixed effects models. Five days but not 10 days social defect ameliorated SNI-associated anxiety-like behavior. CONCLUSIONS: These data suggest that statistically powerful analysis of nerve injury-induced neuropathic pain is a highly sensitive model to determine the behavioral change tendency and distinguish them among behavior curves with or without social defect, and the combination of SNI with resident-intruder paradigm may be a suitable model for behavior evaluation of neuropathic pain with social defect. |
---|