Cargando…
Segmentation of abdomen MR images using kernel graph cuts with shape priors
BACKGROUND: Abdominal organs segmentation of magnetic resonance (MR) images is an important but challenging task in medical image processing. Especially for abdominal tissues or organs, such as liver and kidney, MR imaging is a very difficult task due to the fact that MR images are affected by inten...
Autores principales: | Luo, Qing, Qin, Wenjian, Wen, Tiexiang, Gu, Jia, Gaio, Nikolas, Chen, Shifu, Li, Ling, Xie, Yaoqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220691/ https://www.ncbi.nlm.nih.gov/pubmed/24295198 http://dx.doi.org/10.1186/1475-925X-12-124 |
Ejemplares similares
-
A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE
por: Yang, Fan, et al.
Publicado: (2012) -
Reconstruction of freehand 3D ultrasound based on kernel regression
por: Chen, Xiankang, et al.
Publicado: (2014) -
Esophagus Segmentation from 3D CT Data Using Skeleton Prior-Based Graph Cut
por: Grosgeorge, Damien, et al.
Publicado: (2013) -
Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain
por: Rashno, Abdolreza, et al.
Publicado: (2017) -
ShaKer: RNA SHAPE prediction using graph kernel
por: Mautner, Stefan, et al.
Publicado: (2019)