Cargando…
Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages
In this study, we have utilized wild-type (WT), ASC(−/−), and NLRP3(−/−) macrophages and inhibition approaches to investigate the mechanisms of inflammasome activation and their role in Trypanosoma cruzi infection. We also probed human macrophages and analyzed published microarray datasets from huma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221042/ https://www.ncbi.nlm.nih.gov/pubmed/25372293 http://dx.doi.org/10.1371/journal.pone.0111539 |
_version_ | 1782342836805435392 |
---|---|
author | Dey, Nilay Sinha, Mala Gupta, Shivali Gonzalez, Mariela Natacha Fang, Rong Endsley, Janice J. Luxon, Bruce A. Garg, Nisha Jain |
author_facet | Dey, Nilay Sinha, Mala Gupta, Shivali Gonzalez, Mariela Natacha Fang, Rong Endsley, Janice J. Luxon, Bruce A. Garg, Nisha Jain |
author_sort | Dey, Nilay |
collection | PubMed |
description | In this study, we have utilized wild-type (WT), ASC(−/−), and NLRP3(−/−) macrophages and inhibition approaches to investigate the mechanisms of inflammasome activation and their role in Trypanosoma cruzi infection. We also probed human macrophages and analyzed published microarray datasets from human fibroblasts, and endothelial and smooth muscle cells for T. cruzi-induced changes in the expression genes included in the RT Profiler Human Inflammasome arrays. T. cruzi infection elicited a subdued and delayed activation of inflammasome-related gene expression and IL-1β production in mφs in comparison to LPS-treated controls. When WT and ASC(−/−) macrophages were treated with inhibitors of caspase-1, IL-1β, or NADPH oxidase, we found that IL-1β production by caspase-1/ASC inflammasome required reactive oxygen species (ROS) as a secondary signal. Moreover, IL-1β regulated NF-κB signaling of inflammatory cytokine gene expression and, subsequently, intracellular parasite replication in macrophages. NLRP3(−/−) macrophages, despite an inability to elicit IL-1β activation and inflammatory cytokine gene expression, exhibited a 4-fold decline in intracellular parasites in comparison to that noted in matched WT controls. NLRP3(−/−) macrophages were not refractory to T. cruzi, and instead exhibited a very high basal level of ROS (>100-fold higher than WT controls) that was maintained after infection in an IL-1β-independent manner and contributed to efficient parasite killing. We conclude that caspase-1/ASC inflammasomes play a significant role in the activation of IL-1β/ROS and NF-κB signaling of cytokine gene expression for T. cruzi control in human and mouse macrophages. However, NLRP3-mediated IL-1β/NFκB activation is dispensable and compensated for by ROS-mediated control of T. cruzi replication and survival in macrophages. |
format | Online Article Text |
id | pubmed-4221042 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42210422014-11-12 Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages Dey, Nilay Sinha, Mala Gupta, Shivali Gonzalez, Mariela Natacha Fang, Rong Endsley, Janice J. Luxon, Bruce A. Garg, Nisha Jain PLoS One Research Article In this study, we have utilized wild-type (WT), ASC(−/−), and NLRP3(−/−) macrophages and inhibition approaches to investigate the mechanisms of inflammasome activation and their role in Trypanosoma cruzi infection. We also probed human macrophages and analyzed published microarray datasets from human fibroblasts, and endothelial and smooth muscle cells for T. cruzi-induced changes in the expression genes included in the RT Profiler Human Inflammasome arrays. T. cruzi infection elicited a subdued and delayed activation of inflammasome-related gene expression and IL-1β production in mφs in comparison to LPS-treated controls. When WT and ASC(−/−) macrophages were treated with inhibitors of caspase-1, IL-1β, or NADPH oxidase, we found that IL-1β production by caspase-1/ASC inflammasome required reactive oxygen species (ROS) as a secondary signal. Moreover, IL-1β regulated NF-κB signaling of inflammatory cytokine gene expression and, subsequently, intracellular parasite replication in macrophages. NLRP3(−/−) macrophages, despite an inability to elicit IL-1β activation and inflammatory cytokine gene expression, exhibited a 4-fold decline in intracellular parasites in comparison to that noted in matched WT controls. NLRP3(−/−) macrophages were not refractory to T. cruzi, and instead exhibited a very high basal level of ROS (>100-fold higher than WT controls) that was maintained after infection in an IL-1β-independent manner and contributed to efficient parasite killing. We conclude that caspase-1/ASC inflammasomes play a significant role in the activation of IL-1β/ROS and NF-κB signaling of cytokine gene expression for T. cruzi control in human and mouse macrophages. However, NLRP3-mediated IL-1β/NFκB activation is dispensable and compensated for by ROS-mediated control of T. cruzi replication and survival in macrophages. Public Library of Science 2014-11-05 /pmc/articles/PMC4221042/ /pubmed/25372293 http://dx.doi.org/10.1371/journal.pone.0111539 Text en © 2014 Dey et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dey, Nilay Sinha, Mala Gupta, Shivali Gonzalez, Mariela Natacha Fang, Rong Endsley, Janice J. Luxon, Bruce A. Garg, Nisha Jain Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages |
title | Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages |
title_full | Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages |
title_fullStr | Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages |
title_full_unstemmed | Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages |
title_short | Caspase-1/ASC Inflammasome-Mediated Activation of IL-1β–ROS–NF-κB Pathway for Control of Trypanosoma cruzi Replication and Survival Is Dispensable in NLRP3(−/−) Macrophages |
title_sort | caspase-1/asc inflammasome-mediated activation of il-1β–ros–nf-κb pathway for control of trypanosoma cruzi replication and survival is dispensable in nlrp3(−/−) macrophages |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221042/ https://www.ncbi.nlm.nih.gov/pubmed/25372293 http://dx.doi.org/10.1371/journal.pone.0111539 |
work_keys_str_mv | AT deynilay caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT sinhamala caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT guptashivali caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT gonzalezmarielanatacha caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT fangrong caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT endsleyjanicej caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT luxonbrucea caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages AT gargnishajain caspase1ascinflammasomemediatedactivationofil1brosnfkbpathwayforcontroloftrypanosomacruzireplicationandsurvivalisdispensableinnlrp3macrophages |