Cargando…
Identification of Under-Detected Periodicity in Time-Series Microarray Data by Using Empirical Mode Decomposition
Detecting periodicity signals from time-series microarray data is commonly used to facilitate the understanding of the critical roles and underlying mechanisms of regulatory transcriptomes. However, time-series microarray data are noisy. How the temporal data structure affects the performance of per...
Autores principales: | Chen, Chaang-Ray, Shu, Wun-Yi, Chang, Cheng-Wei, Hsu, Ian C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221108/ https://www.ncbi.nlm.nih.gov/pubmed/25372711 http://dx.doi.org/10.1371/journal.pone.0111719 |
Ejemplares similares
-
Identification of Human Housekeeping Genes and Tissue-Selective Genes by Microarray Meta-Analysis
por: Chang, Cheng-Wei, et al.
Publicado: (2011) -
Identification of Reference Genes across Physiological States for
qRT-PCR through Microarray Meta-Analysis
por: Cheng, Wei-Chung, et al.
Publicado: (2011) -
Application of Empirical Mode Decomposition with Local Linear Quantile Regression in Financial Time Series Forecasting
por: Jaber, Abobaker M., et al.
Publicado: (2014) -
Empirical mode decomposition with missing values
por: Kim, Donghoh, et al.
Publicado: (2016) -
Detecting position dependent tremor with the Empirical mode decomposition
por: Lee, André, et al.
Publicado: (2015)