Cargando…
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Model-based segmentation methods have the advantage of incorporating a priori shape information into the segmentation process but suffer from the drawback that the model must be initialized sufficiently close to the target. We propose a novel approach for initializing an active shape model (ASM) and...
Autores principales: | Gill, Gurman, Toews, Matthew, Beichel, Reinhard R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221988/ https://www.ncbi.nlm.nih.gov/pubmed/25400660 http://dx.doi.org/10.1155/2014/479154 |
Ejemplares similares
-
Lung Segmentation in 4D CT Volumes Based on Robust Active Shape Model Matching
por: Gill, Gurman, et al.
Publicado: (2015) -
Automated segmentation of lungs and lung tumors in mouse micro-CT scans
por: Ferl, Gregory Z., et al.
Publicado: (2022) -
Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach
por: Beichel, Reinhard R., et al.
Publicado: (2016) -
COVID-19 CT Scan Lung Segmentation: How We Do It
por: Negroni, Davide, et al.
Publicado: (2022) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022)