Cargando…

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabri...

Descripción completa

Detalles Bibliográficos
Autores principales: Devid, Edwin J, Martinho, Paulo N, Kamalakar, M Venkata, Prendergast, Úna, Kübel, Christian, Lemma, Tibebe, Dayen, Jean-François, Keyes, Tia E, Doudin, Bernard, Ruben, Mario, van der Molen, Sense Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222375/
https://www.ncbi.nlm.nih.gov/pubmed/25383278
http://dx.doi.org/10.3762/bjnano.5.177
Descripción
Sumario:We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV–visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au–S bonds is found, with no evidence for the formation of N–Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures.