Cargando…
Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT...
Autores principales: | Khaligh-Razavi, Seyed-Mahdi, Kriegeskorte, Nikolaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222664/ https://www.ncbi.nlm.nih.gov/pubmed/25375136 http://dx.doi.org/10.1371/journal.pcbi.1003915 |
Ejemplares similares
-
Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models
por: Khaligh-Razavi, Seyed-Mahdi, et al.
Publicado: (2017) -
Visual representations are dominated by intrinsic fluctuations correlated between areas
por: Henriksson, Linda, et al.
Publicado: (2015) -
Representational Distance Learning for Deep Neural Networks
por: McClure, Patrick, et al.
Publicado: (2016) -
Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis
por: Diedrichsen, Jörn, et al.
Publicado: (2017) -
A multivariate comparison of electroencephalogram and functional magnetic resonance imaging to electrocorticogram using visual object representations in humans
por: Ebrahiminia, Fatemeh, et al.
Publicado: (2022)