Cargando…

Tumor glycolysis as a target for cancer therapy: progress and prospects

Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the “hallmarks of cancer”. This metabolic phenotype is characterized by preferential dependence on glycolysis (the process of conversion of glucose into pyruvate followed by lactate production) for energy p...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganapathy-Kanniappan, Shanmugasundaram, Geschwind, Jean-Francois H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223729/
https://www.ncbi.nlm.nih.gov/pubmed/24298908
http://dx.doi.org/10.1186/1476-4598-12-152
_version_ 1782343249865736192
author Ganapathy-Kanniappan, Shanmugasundaram
Geschwind, Jean-Francois H
author_facet Ganapathy-Kanniappan, Shanmugasundaram
Geschwind, Jean-Francois H
author_sort Ganapathy-Kanniappan, Shanmugasundaram
collection PubMed
description Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the “hallmarks of cancer”. This metabolic phenotype is characterized by preferential dependence on glycolysis (the process of conversion of glucose into pyruvate followed by lactate production) for energy production in an oxygen-independent manner. Although glycolysis is less efficient than oxidative phosphorylation in the net yield of adenosine triphosphate (ATP), cancer cells adapt to this mathematical disadvantage by increased glucose up-take, which in turn facilitates a higher rate of glycolysis. Apart from providing cellular energy, the metabolic intermediates of glycolysis also play a pivotal role in macromolecular biosynthesis, thus conferring selective advantage to cancer cells under diminished nutrient supply. Accumulating data also indicate that intracellular ATP is a critical determinant of chemoresistance. Under hypoxic conditions where glycolysis remains the predominant energy producing pathway sensitizing cancer cells would require intracellular depletion of ATP by inhibition of glycolysis. Together, the oncogenic regulation of glycolysis and multifaceted roles of glycolytic components underscore the biological significance of tumor glycolysis. Thus targeting glycolysis remains attractive for therapeutic intervention. Several preclinical investigations have indeed demonstrated the effectiveness of this therapeutic approach thereby supporting its scientific rationale. Recent reviews have provided a wealth of information on the biochemical targets of glycolysis and their inhibitors. The objective of this review is to present the most recent research on the cancer-specific role of glycolytic enzymes including their non-glycolytic functions in order to explore the potential for therapeutic opportunities. Further, we discuss the translational potential of emerging drug candidates in light of technical advances in treatment modalities such as image-guided targeted delivery of cancer therapeutics.
format Online
Article
Text
id pubmed-4223729
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-42237292014-11-08 Tumor glycolysis as a target for cancer therapy: progress and prospects Ganapathy-Kanniappan, Shanmugasundaram Geschwind, Jean-Francois H Mol Cancer Review Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the “hallmarks of cancer”. This metabolic phenotype is characterized by preferential dependence on glycolysis (the process of conversion of glucose into pyruvate followed by lactate production) for energy production in an oxygen-independent manner. Although glycolysis is less efficient than oxidative phosphorylation in the net yield of adenosine triphosphate (ATP), cancer cells adapt to this mathematical disadvantage by increased glucose up-take, which in turn facilitates a higher rate of glycolysis. Apart from providing cellular energy, the metabolic intermediates of glycolysis also play a pivotal role in macromolecular biosynthesis, thus conferring selective advantage to cancer cells under diminished nutrient supply. Accumulating data also indicate that intracellular ATP is a critical determinant of chemoresistance. Under hypoxic conditions where glycolysis remains the predominant energy producing pathway sensitizing cancer cells would require intracellular depletion of ATP by inhibition of glycolysis. Together, the oncogenic regulation of glycolysis and multifaceted roles of glycolytic components underscore the biological significance of tumor glycolysis. Thus targeting glycolysis remains attractive for therapeutic intervention. Several preclinical investigations have indeed demonstrated the effectiveness of this therapeutic approach thereby supporting its scientific rationale. Recent reviews have provided a wealth of information on the biochemical targets of glycolysis and their inhibitors. The objective of this review is to present the most recent research on the cancer-specific role of glycolytic enzymes including their non-glycolytic functions in order to explore the potential for therapeutic opportunities. Further, we discuss the translational potential of emerging drug candidates in light of technical advances in treatment modalities such as image-guided targeted delivery of cancer therapeutics. BioMed Central 2013-12-03 /pmc/articles/PMC4223729/ /pubmed/24298908 http://dx.doi.org/10.1186/1476-4598-12-152 Text en Copyright © 2013 Ganapathy-Kanniappan and Geschwind; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Ganapathy-Kanniappan, Shanmugasundaram
Geschwind, Jean-Francois H
Tumor glycolysis as a target for cancer therapy: progress and prospects
title Tumor glycolysis as a target for cancer therapy: progress and prospects
title_full Tumor glycolysis as a target for cancer therapy: progress and prospects
title_fullStr Tumor glycolysis as a target for cancer therapy: progress and prospects
title_full_unstemmed Tumor glycolysis as a target for cancer therapy: progress and prospects
title_short Tumor glycolysis as a target for cancer therapy: progress and prospects
title_sort tumor glycolysis as a target for cancer therapy: progress and prospects
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223729/
https://www.ncbi.nlm.nih.gov/pubmed/24298908
http://dx.doi.org/10.1186/1476-4598-12-152
work_keys_str_mv AT ganapathykanniappanshanmugasundaram tumorglycolysisasatargetforcancertherapyprogressandprospects
AT geschwindjeanfrancoish tumorglycolysisasatargetforcancertherapyprogressandprospects