Cargando…
Evolutionary Roots of Arginase Expression and Regulation
Two main types of macrophage functions are known: classical (M1), producing nitric oxide, NO, and M2, in which arginase activity is primarily expressed. Ornithine, the product of arginase, is a substrate for synthesis of polyamines and collagen, important for growth and ontogeny of animals. M2 macro...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224125/ https://www.ncbi.nlm.nih.gov/pubmed/25426114 http://dx.doi.org/10.3389/fimmu.2014.00544 |
_version_ | 1782343311465381888 |
---|---|
author | Dzik, Jolanta Maria |
author_facet | Dzik, Jolanta Maria |
author_sort | Dzik, Jolanta Maria |
collection | PubMed |
description | Two main types of macrophage functions are known: classical (M1), producing nitric oxide, NO, and M2, in which arginase activity is primarily expressed. Ornithine, the product of arginase, is a substrate for synthesis of polyamines and collagen, important for growth and ontogeny of animals. M2 macrophages, expressing high level of mitochondrial arginase, have been implicated in promoting cell division and deposition of collagen during ontogeny and wound repair. Arginase expression is the default mode of tissue macrophages, but can also be amplified by signals, such as IL-4/13 or transforming growth factor-β (TGF-β) that accelerates wound healing and tissue repair. In worms, the induction of collagen gene is coupled with induction of immune response genes, both depending on the same TGF-β-like pathway. This suggests that the main function of M2 “heal” type macrophages is originally connected with the TGF-β superfamily of proteins, which are involved in regulation of tissue and organ differentiation in embryogenesis. Excretory–secretory products of metazoan parasites are able to induce M2-type of macrophage responses promoting wound healing without participation of Th2 cytokines IL-4/IL-13. The expression of arginase in lower animals can be induced by the presence of parasite antigens and TGF-β signals leading to collagen synthesis. This also means that the main proteins, which, in primitive metazoans, are involved in regulation of tissue and organ differentiation in embryogenesis are produced by innate immunity. The signaling function of NO is known already from the sponge stage of animal evolution. The cytotoxic role of NO molecule appeared later, as documented in immunity of marine mollusks and some insects. This implies that the M2-wound healing promoting function predates the defensive role of NO, a characteristic of M1 macrophages. Understanding when and how the M1 and M2 activities came to be in animals is useful for understanding how macrophage immunity, and immune responses operate. |
format | Online Article Text |
id | pubmed-4224125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-42241252014-11-25 Evolutionary Roots of Arginase Expression and Regulation Dzik, Jolanta Maria Front Immunol Immunology Two main types of macrophage functions are known: classical (M1), producing nitric oxide, NO, and M2, in which arginase activity is primarily expressed. Ornithine, the product of arginase, is a substrate for synthesis of polyamines and collagen, important for growth and ontogeny of animals. M2 macrophages, expressing high level of mitochondrial arginase, have been implicated in promoting cell division and deposition of collagen during ontogeny and wound repair. Arginase expression is the default mode of tissue macrophages, but can also be amplified by signals, such as IL-4/13 or transforming growth factor-β (TGF-β) that accelerates wound healing and tissue repair. In worms, the induction of collagen gene is coupled with induction of immune response genes, both depending on the same TGF-β-like pathway. This suggests that the main function of M2 “heal” type macrophages is originally connected with the TGF-β superfamily of proteins, which are involved in regulation of tissue and organ differentiation in embryogenesis. Excretory–secretory products of metazoan parasites are able to induce M2-type of macrophage responses promoting wound healing without participation of Th2 cytokines IL-4/IL-13. The expression of arginase in lower animals can be induced by the presence of parasite antigens and TGF-β signals leading to collagen synthesis. This also means that the main proteins, which, in primitive metazoans, are involved in regulation of tissue and organ differentiation in embryogenesis are produced by innate immunity. The signaling function of NO is known already from the sponge stage of animal evolution. The cytotoxic role of NO molecule appeared later, as documented in immunity of marine mollusks and some insects. This implies that the M2-wound healing promoting function predates the defensive role of NO, a characteristic of M1 macrophages. Understanding when and how the M1 and M2 activities came to be in animals is useful for understanding how macrophage immunity, and immune responses operate. Frontiers Media S.A. 2014-11-07 /pmc/articles/PMC4224125/ /pubmed/25426114 http://dx.doi.org/10.3389/fimmu.2014.00544 Text en Copyright © 2014 Dzik. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Dzik, Jolanta Maria Evolutionary Roots of Arginase Expression and Regulation |
title | Evolutionary Roots of Arginase Expression and Regulation |
title_full | Evolutionary Roots of Arginase Expression and Regulation |
title_fullStr | Evolutionary Roots of Arginase Expression and Regulation |
title_full_unstemmed | Evolutionary Roots of Arginase Expression and Regulation |
title_short | Evolutionary Roots of Arginase Expression and Regulation |
title_sort | evolutionary roots of arginase expression and regulation |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224125/ https://www.ncbi.nlm.nih.gov/pubmed/25426114 http://dx.doi.org/10.3389/fimmu.2014.00544 |
work_keys_str_mv | AT dzikjolantamaria evolutionaryrootsofarginaseexpressionandregulation |