Cargando…
Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood
BACKGROUND: Peripheral blood samples have been subjected to comprehensive gene expression profiling to identify biomarkers for a wide range of diseases. However, blood samples include red blood cells, white blood cells, and platelets. White blood cells comprise polymorphonuclear leukocytes, monocyte...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224392/ https://www.ncbi.nlm.nih.gov/pubmed/25379667 http://dx.doi.org/10.1371/journal.pone.0111405 |
_version_ | 1782343338938073088 |
---|---|
author | Ono, Chiaki Yu, Zhiqian Kasahara, Yoshiyuki Kikuchi, Yoshie Ishii, Naoto Tomita, Hiroaki |
author_facet | Ono, Chiaki Yu, Zhiqian Kasahara, Yoshiyuki Kikuchi, Yoshie Ishii, Naoto Tomita, Hiroaki |
author_sort | Ono, Chiaki |
collection | PubMed |
description | BACKGROUND: Peripheral blood samples have been subjected to comprehensive gene expression profiling to identify biomarkers for a wide range of diseases. However, blood samples include red blood cells, white blood cells, and platelets. White blood cells comprise polymorphonuclear leukocytes, monocytes, and various types of lymphocytes. Blood is not distinguishable, irrespective of whether the expression profiles reflect alterations in (a) gene expression patterns in each cell type or (b) the proportion of cell types in blood. CD4(+) Th cells are classified into two functionally distinct subclasses, namely Th1 and Th2 cells, on the basis of the unique characteristics of their secreted cytokines and their roles in the immune system. Th1 and Th2 cells play an important role not only in the pathogenesis of human inflammatory, allergic, and autoimmune diseases, but also in diseases that are not considered to be immune or inflammatory disorders. However, analyses of minor cellular components such as CD4(+) cell subpopulations have not been performed, partly because of the limited number of these cells in collected samples. METHODOLOGY/PRINCIPAL FINDINGS: We describe fluorescently activated cell sorting followed by microarray (FACS–array) technology as a useful experimental strategy for characterizing the expression profiles of specific immune cells in the circulation. We performed reproducible gene expression profiling of Th1 and Th2, respectively. Our data suggest that this procedure provides reliable information on the gene expression profiles of certain small immune cell populations. Moreover, our data suggest that GZMK, GZMH, EOMES, IGFBP3, and STOM may be novel markers for distinguishing Th1 cells from Th2 cells, whereas IL17RB and CNTNAP1 can be Th2-specific markers. CONCLUSIONS/SIGNIFICANCE: Our approach may help in identifying aberrations and novel therapeutic or diagnostic targets for diseases that affect Th1 or Th2 responses and elucidating the involvement of a subpopulation of immune cells in some diseases. |
format | Online Article Text |
id | pubmed-4224392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42243922014-11-18 Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood Ono, Chiaki Yu, Zhiqian Kasahara, Yoshiyuki Kikuchi, Yoshie Ishii, Naoto Tomita, Hiroaki PLoS One Research Article BACKGROUND: Peripheral blood samples have been subjected to comprehensive gene expression profiling to identify biomarkers for a wide range of diseases. However, blood samples include red blood cells, white blood cells, and platelets. White blood cells comprise polymorphonuclear leukocytes, monocytes, and various types of lymphocytes. Blood is not distinguishable, irrespective of whether the expression profiles reflect alterations in (a) gene expression patterns in each cell type or (b) the proportion of cell types in blood. CD4(+) Th cells are classified into two functionally distinct subclasses, namely Th1 and Th2 cells, on the basis of the unique characteristics of their secreted cytokines and their roles in the immune system. Th1 and Th2 cells play an important role not only in the pathogenesis of human inflammatory, allergic, and autoimmune diseases, but also in diseases that are not considered to be immune or inflammatory disorders. However, analyses of minor cellular components such as CD4(+) cell subpopulations have not been performed, partly because of the limited number of these cells in collected samples. METHODOLOGY/PRINCIPAL FINDINGS: We describe fluorescently activated cell sorting followed by microarray (FACS–array) technology as a useful experimental strategy for characterizing the expression profiles of specific immune cells in the circulation. We performed reproducible gene expression profiling of Th1 and Th2, respectively. Our data suggest that this procedure provides reliable information on the gene expression profiles of certain small immune cell populations. Moreover, our data suggest that GZMK, GZMH, EOMES, IGFBP3, and STOM may be novel markers for distinguishing Th1 cells from Th2 cells, whereas IL17RB and CNTNAP1 can be Th2-specific markers. CONCLUSIONS/SIGNIFICANCE: Our approach may help in identifying aberrations and novel therapeutic or diagnostic targets for diseases that affect Th1 or Th2 responses and elucidating the involvement of a subpopulation of immune cells in some diseases. Public Library of Science 2014-11-07 /pmc/articles/PMC4224392/ /pubmed/25379667 http://dx.doi.org/10.1371/journal.pone.0111405 Text en © 2014 Ono et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ono, Chiaki Yu, Zhiqian Kasahara, Yoshiyuki Kikuchi, Yoshie Ishii, Naoto Tomita, Hiroaki Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood |
title | Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood |
title_full | Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood |
title_fullStr | Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood |
title_full_unstemmed | Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood |
title_short | Fluorescently Activated Cell Sorting Followed by Microarray Profiling of Helper T Cell Subtypes from Human Peripheral Blood |
title_sort | fluorescently activated cell sorting followed by microarray profiling of helper t cell subtypes from human peripheral blood |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224392/ https://www.ncbi.nlm.nih.gov/pubmed/25379667 http://dx.doi.org/10.1371/journal.pone.0111405 |
work_keys_str_mv | AT onochiaki fluorescentlyactivatedcellsortingfollowedbymicroarrayprofilingofhelpertcellsubtypesfromhumanperipheralblood AT yuzhiqian fluorescentlyactivatedcellsortingfollowedbymicroarrayprofilingofhelpertcellsubtypesfromhumanperipheralblood AT kasaharayoshiyuki fluorescentlyactivatedcellsortingfollowedbymicroarrayprofilingofhelpertcellsubtypesfromhumanperipheralblood AT kikuchiyoshie fluorescentlyactivatedcellsortingfollowedbymicroarrayprofilingofhelpertcellsubtypesfromhumanperipheralblood AT ishiinaoto fluorescentlyactivatedcellsortingfollowedbymicroarrayprofilingofhelpertcellsubtypesfromhumanperipheralblood AT tomitahiroaki fluorescentlyactivatedcellsortingfollowedbymicroarrayprofilingofhelpertcellsubtypesfromhumanperipheralblood |