Cargando…

Long Term Storage of Dry versus Frozen RNA for Next Generation Molecular Studies

The standard method for the storage and preservation of RNA has been at ultra-low temperatures. However, reliance on liquid nitrogen and freezers for storage of RNA has multiple downsides. Recently new techniques have been developed for storing RNA at room temperature utilizing desiccation and are r...

Descripción completa

Detalles Bibliográficos
Autores principales: Seelenfreund, Eric, Robinson, William A., Amato, Carol M., Tan, Aik-Choon, Kim, Jihye, Robinson, Steven E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224406/
https://www.ncbi.nlm.nih.gov/pubmed/25380187
http://dx.doi.org/10.1371/journal.pone.0111827
Descripción
Sumario:The standard method for the storage and preservation of RNA has been at ultra-low temperatures. However, reliance on liquid nitrogen and freezers for storage of RNA has multiple downsides. Recently new techniques have been developed for storing RNA at room temperature utilizing desiccation and are reported to be an effective alternative for preserving RNA integrity. In this study we compared frozen RNA samples stored for up to one year to those which had been desiccated using RNAstable (Biomatrica, Inc., San Diego, CA) and stored at room temperature. RNA samples were placed in aliquots and stored after desiccation or frozen (at −80°C), and were analyzed for RNA Integrity Number (RIN), and by qPCR, and RNA sequencing. Our study shows that RNAstable is able to preserve desiccated RNA samples at room temperature for up to one year, and that RNA preserved by desiccation is comparable to cryopreserved RNA for downstream analyses including real-time-PCR and RNA sequencing.