Cargando…
Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria
The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen specie...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224425/ https://www.ncbi.nlm.nih.gov/pubmed/25380132 http://dx.doi.org/10.1371/journal.pone.0112271 |
_version_ | 1782343346784567296 |
---|---|
author | Peters, Leila Priscila Carvalho, Giselle Martins, Paula Fabiane Dourado, Manuella Nóbrega Vilhena, Milca Bartz Pileggi, Marcos Azevedo, Ricardo Antunes |
author_facet | Peters, Leila Priscila Carvalho, Giselle Martins, Paula Fabiane Dourado, Manuella Nóbrega Vilhena, Milca Bartz Pileggi, Marcos Azevedo, Ricardo Antunes |
author_sort | Peters, Leila Priscila |
collection | PubMed |
description | The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. |
format | Online Article Text |
id | pubmed-4224425 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42244252014-11-18 Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria Peters, Leila Priscila Carvalho, Giselle Martins, Paula Fabiane Dourado, Manuella Nóbrega Vilhena, Milca Bartz Pileggi, Marcos Azevedo, Ricardo Antunes PLoS One Research Article The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. Public Library of Science 2014-11-07 /pmc/articles/PMC4224425/ /pubmed/25380132 http://dx.doi.org/10.1371/journal.pone.0112271 Text en © 2014 Peters et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Peters, Leila Priscila Carvalho, Giselle Martins, Paula Fabiane Dourado, Manuella Nóbrega Vilhena, Milca Bartz Pileggi, Marcos Azevedo, Ricardo Antunes Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria |
title | Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria |
title_full | Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria |
title_fullStr | Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria |
title_full_unstemmed | Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria |
title_short | Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria |
title_sort | differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224425/ https://www.ncbi.nlm.nih.gov/pubmed/25380132 http://dx.doi.org/10.1371/journal.pone.0112271 |
work_keys_str_mv | AT petersleilapriscila differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria AT carvalhogiselle differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria AT martinspaulafabiane differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria AT douradomanuellanobrega differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria AT vilhenamilcabartz differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria AT pileggimarcos differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria AT azevedoricardoantunes differentialresponsesoftheantioxidantsystemofametrynandclomazonetolerantbacteria |