Cargando…
Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging
Lymph node biopsy (LNB) is employed in many cancer surgeries to identify metastatic disease and stage the cancer, yet morbidity and diagnostic delays associated with LNB could be avoided if non-invasive imaging of nodal involvement was reliable. Molecular imaging has potential in this regard; howeve...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224611/ https://www.ncbi.nlm.nih.gov/pubmed/25344739 http://dx.doi.org/10.1038/nm.3732 |
_version_ | 1782343381453635584 |
---|---|
author | Tichauer, Kenneth M. Samkoe, Kimberley S. Gunn, Jason R. Kanick, Stephen C. Hoopes, P. Jack Barth, Richard J. Kaufman, Peter A. Hasan, Tayyaba Pogue, Brian W. |
author_facet | Tichauer, Kenneth M. Samkoe, Kimberley S. Gunn, Jason R. Kanick, Stephen C. Hoopes, P. Jack Barth, Richard J. Kaufman, Peter A. Hasan, Tayyaba Pogue, Brian W. |
author_sort | Tichauer, Kenneth M. |
collection | PubMed |
description | Lymph node biopsy (LNB) is employed in many cancer surgeries to identify metastatic disease and stage the cancer, yet morbidity and diagnostic delays associated with LNB could be avoided if non-invasive imaging of nodal involvement was reliable. Molecular imaging has potential in this regard; however, variable delivery and nonspecific uptake of imaging tracers has made conventional approaches ineffective clinically. A method of correcting for non-specific uptake with injection of a second untargeted tracer is presented, allowing tumor burden in lymph nodes to be quantified. The approach was confirmed in an athymic mouse model of metastatic human breast cancer targeting epidermal growth factor receptor, a cell surface receptor overexpressed by many cancers. A significant correlation was observed between in vivo (dual-tracer) and ex vivo measures of tumor burden (r = 0.97, p < 0.01), with an ultimate sensitivity of approximately 200 cells (potentially more sensitive than conventional LNB). |
format | Online Article Text |
id | pubmed-4224611 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-42246112015-05-01 Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging Tichauer, Kenneth M. Samkoe, Kimberley S. Gunn, Jason R. Kanick, Stephen C. Hoopes, P. Jack Barth, Richard J. Kaufman, Peter A. Hasan, Tayyaba Pogue, Brian W. Nat Med Article Lymph node biopsy (LNB) is employed in many cancer surgeries to identify metastatic disease and stage the cancer, yet morbidity and diagnostic delays associated with LNB could be avoided if non-invasive imaging of nodal involvement was reliable. Molecular imaging has potential in this regard; however, variable delivery and nonspecific uptake of imaging tracers has made conventional approaches ineffective clinically. A method of correcting for non-specific uptake with injection of a second untargeted tracer is presented, allowing tumor burden in lymph nodes to be quantified. The approach was confirmed in an athymic mouse model of metastatic human breast cancer targeting epidermal growth factor receptor, a cell surface receptor overexpressed by many cancers. A significant correlation was observed between in vivo (dual-tracer) and ex vivo measures of tumor burden (r = 0.97, p < 0.01), with an ultimate sensitivity of approximately 200 cells (potentially more sensitive than conventional LNB). 2014-10-26 2014-11 /pmc/articles/PMC4224611/ /pubmed/25344739 http://dx.doi.org/10.1038/nm.3732 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Tichauer, Kenneth M. Samkoe, Kimberley S. Gunn, Jason R. Kanick, Stephen C. Hoopes, P. Jack Barth, Richard J. Kaufman, Peter A. Hasan, Tayyaba Pogue, Brian W. Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
title | Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
title_full | Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
title_fullStr | Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
title_full_unstemmed | Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
title_short | Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
title_sort | microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224611/ https://www.ncbi.nlm.nih.gov/pubmed/25344739 http://dx.doi.org/10.1038/nm.3732 |
work_keys_str_mv | AT tichauerkennethm microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT samkoekimberleys microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT gunnjasonr microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT kanickstephenc microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT hoopespjack microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT barthrichardj microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT kaufmanpetera microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT hasantayyaba microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging AT poguebrianw microscopiclymphnodetumorburdenquantifiedbymacroscopicdualtracermolecularimaging |