Cargando…
Similarity maps and hierarchical clustering for annotating FT-IR spectral images
BACKGROUND: Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segment...
Autores principales: | Zhong, Qiaoyong, Yang, Chen, Großerüschkamp, Frederik, Kallenbach-Thieltges, Angela, Serocka, Peter, Gerwert, Klaus, Mosig, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225570/ https://www.ncbi.nlm.nih.gov/pubmed/24255945 http://dx.doi.org/10.1186/1471-2105-14-333 |
Ejemplares similares
-
Fully automated registration of vibrational microspectroscopic images in histologically stained tissue sections
por: Yang, Chen, et al.
Publicado: (2015) -
Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections
por: Kuepper, Claus, et al.
Publicado: (2018) -
Label-free, automated classification of microsatellite status in colorectal cancer by infrared imaging
por: Kallenbach-Thieltges, Angela, et al.
Publicado: (2020) -
Microencapsulated Red Powders from Cornflower Extract—Spectral (FT-IR and FT-Raman) and Antioxidant Characteristics
por: Różyło, Renata, et al.
Publicado: (2022) -
Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics
por: Großerueschkamp, Frederik, et al.
Publicado: (2017)