Cargando…

Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering

[Image: see text] Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coup...

Descripción completa

Detalles Bibliográficos
Autores principales: Aspetti, Carlos O., Agarwal, Ritesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226303/
https://www.ncbi.nlm.nih.gov/pubmed/25396030
http://dx.doi.org/10.1021/jz501823d
Descripción
Sumario:[Image: see text] Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities.