Cargando…

Protein biomarkers in vernix with potential to predict the development of atopic eczema in early childhood

BACKGROUND: Atopic eczema (AE) is a chronic inflammatory skin disease, which has increased in prevalence. Evidence points toward lifestyle as a major risk factor. AE is often the first symptom early in life later followed by food allergy, asthma, and allergic rhinitis. Thus, there is a great need to...

Descripción completa

Detalles Bibliográficos
Autores principales: Holm, T, Rutishauser, D, Kai-Larsen, Y, Lyutvinskiy, Y, Stenius, F, Zubarev, R A, Agerberth, B, Alm, J, Scheynius, A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226386/
https://www.ncbi.nlm.nih.gov/pubmed/24205894
http://dx.doi.org/10.1111/all.12308
Descripción
Sumario:BACKGROUND: Atopic eczema (AE) is a chronic inflammatory skin disease, which has increased in prevalence. Evidence points toward lifestyle as a major risk factor. AE is often the first symptom early in life later followed by food allergy, asthma, and allergic rhinitis. Thus, there is a great need to find early, preferentially noninvasive, biomarkers to identify individuals that are predisposed to AE with the goal to prevent disease development. OBJECTIVE: To investigate whether the protein abundances in vernix can predict later development of AE. METHODS: Vernix collected at birth from 34 newborns within the Assessment of Lifestyle and Allergic Disease During INfancy (ALADDIN) birth cohort was included in the study. At 2 years of age, 18 children had developed AE. Vernix proteins were identified and quantified with liquid chromatography coupled to tandem mass spectrometry. RESULTS: We identified and quantified 203 proteins in all vernix samples. An orthogonal projections to latent structures-discriminant analysis (OPLS-DA) model was found with R(2) = 0.85, Q(2) = 0.39, and discrimination power between the AE and healthy group of 73.5%. Polyubiquitin-C and calmodulin-like protein 5 showed strong negative correlation to the AE group, with a correlation coefficient of 0.73 and 0.68, respectively, and a P-value of 8.2 E-7 and 1.8 E-5, respectively. For these two proteins, the OPLS-DA model showed a prediction accuracy of 91.2%. CONCLUSION: The protein abundances in vernix, and particularly that of polyubiquitin-C and calmodulin-like protein 5, are promising candidates as biomarkers for the identification of newborns predisposed to develop AE.