Cargando…

Effect of Bioglass on Growth and Biomineralization of SaOS-2 Cells in Hydrogel after 3D Cell Bioprinting

We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca(2+)-complex, or si...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaohong, Tolba, Emad, Schröder, Heinz C., Neufurth, Meik, Feng, Qingling, Diehl-Seifert, Bärbel, Müller, Werner E. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226565/
https://www.ncbi.nlm.nih.gov/pubmed/25383549
http://dx.doi.org/10.1371/journal.pone.0112497
Descripción
Sumario:We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca(2+)-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO(2)∶CaO∶P(2)O(5) of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca(2+)-complex is co-added to the cell-containing alginate/gelatin hydrogel the growth behavior of the cells is not changed. Addition of 5 mg/ml of bioglass particles to this hydrogel significantly enhanced the potency of the entrapped SaOS-2 cells to mineralize. If compared with the extent of the cells to form mineral deposits in the absence of bioglass, the cells exposed to bioglass together with 100 µmoles/L polyP•Ca(2+)-complex increased their mineralization activity from 2.1- to 3.9-fold, or with 50 µmoles/L silica from 1.8- to 2.9-fold, or with 50 µmoles/L biosilica from 2.7- to 4.8-fold or with the two components together (100 µmoles/L polyP•Ca(2+)-complex and 50 µmoles/L biosilica) from 4.1- to 6.8-fold. Element analysis by EDX spectrometry of the mineral nodules formed by SaOS-2 revealed an accumulation of O, P, Ca and C, indicating that the mineral deposits contain, besides Ca-phosphate also Ca-carbonate. The results show that bioglass added to alginate/gelatin hydrogel increases the proliferation and mineralization of bioprinted SaOS-2 cells. We conclude that the development of cell-containing scaffolds consisting of a bioprintable, solid and cell-compatible inner matrix surrounded by a printable hard and flexible outer matrix containing bioglass, provide a suitable strategy for the fabrication of morphogenetically active and biodegradable implants.