Cargando…
Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury
BACKGROUND: Hyperglycemia exacerbates brain damage caused by cerebral ischemia. Neuroinflammation may play a role in mediating such enhanced damage. The objectives of this study were to examine the mRNA and protein levels and cell type distribution of ICAM-1 after cerebral ischemia in normo-and diab...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226864/ https://www.ncbi.nlm.nih.gov/pubmed/25389378 http://dx.doi.org/10.1186/s12950-014-0035-2 |
Sumario: | BACKGROUND: Hyperglycemia exacerbates brain damage caused by cerebral ischemia. Neuroinflammation may play a role in mediating such enhanced damage. The objectives of this study were to examine the mRNA and protein levels and cell type distribution of ICAM-1 after cerebral ischemia in normo-and diabetic hyperglycemic rats. RESULTS: Compared to normoglycemic ischemia animals, diabetes aggravated neuronal death, decreased Nissl body staining, and increased ICAM-1 mRNA and protein levels in the frontal cortex. The increased ICAM-1 was located not only in vascular endothelial cells but also in cortical neurons. CONCLUSIONS: Our results suggest that exacerbated neuro-inflammation in the brain may mediate the detrimental effects of diabetes on the ischemic brain. |
---|