Cargando…
Activation of caspases and inhibition of ribosome biogenesis mediate antitumor activity of Chijongdan in A549 non-small lung cancer cells
BACKGROUND: Though herbal medicines have been used for cancer prevention and treatment, their scientific evidences still remain unclear so far. Thus, complementary and alternative medicine (CAM) project has been actively executed to reveal the scientific evidences in the USA and other countries. In...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226917/ https://www.ncbi.nlm.nih.gov/pubmed/25345917 http://dx.doi.org/10.1186/1472-6882-14-420 |
Sumario: | BACKGROUND: Though herbal medicines have been used for cancer prevention and treatment, their scientific evidences still remain unclear so far. Thus, complementary and alternative medicine (CAM) project has been actively executed to reveal the scientific evidences in the USA and other countries. In the present study, we elucidated antitumor mechanism of Chijongdan, an oriental prescription of Rhus verniciflua, processed Panax ginseng, Persicaria tinctoria and Realgar, that has been traditionally applied for cancer treatment in Korea. METHODS: Chijongdan was prepared with extracts of Rhus verniciflua, processed Panax ginseng, Persicaria tinctoria and processed Realgar. The cytotoxicity of Chijongdan was measured by MTT colorimetric assay. Cell cycle analysis was performed by FACS. Western blot was performed to see the apoptosis related proteins. RESULTS: Chijongdan significantly exerted cytotoxicity in A549, H460 and H1299 non-small cell lung carcinoma (NSCLC) cells by MTT assay and also increased the number of ethidium homodimer positively stained cells in A549 NSCLC cells. Also, cell cycle analysis showed that Chijongdan increased sub-G1 population in a concentration dependent manner in A549 cells. In addition, Western blotting revealed that Chijongdan activated cleaved PARP, and caspase 9/3, while attenuated the expression of survival genes such as Bcl-2, Bcl-(XL) and survivin in A549 cells. Furthermore, Chijongdan suppressed the expression of ribosomal biogenesis related proteins such as upstream binding factor (UBF), Fibrillarin, NPM (B23) and Importin-7 (IPO7) and conversely pan-caspase inhibitor Z--VAD-FMK reversed the apoptotic ability of Chijongdan to cleave PARP and caspase 3 and attenuate the expression of UBF and Fibrillarin in A549 cells. CONCLUSIONS: These findings suggest that Chijongdan induces apoptosis and inhibits ribosomal biogenesis proteins via caspase activation. |
---|