Cargando…
Accumulation of connective tissue growth factor(+) cells during the early phase of rat traumatic brain injury
ABSTRACT: BACKGROUND: Glial scar formation is a common histopathological feature of traumatic brain injury (TBI). Astrogliosis and expression of transforming growth factor beta (TGF-β) are key components of scar formation and blood-brain barrier modulation. Connective tissue growth factor (CTGF) is...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227000/ https://www.ncbi.nlm.nih.gov/pubmed/25012526 http://dx.doi.org/10.1186/1746-1596-9-141 |
Sumario: | ABSTRACT: BACKGROUND: Glial scar formation is a common histopathological feature of traumatic brain injury (TBI). Astrogliosis and expression of transforming growth factor beta (TGF-β) are key components of scar formation and blood-brain barrier modulation. Connective tissue growth factor (CTGF) is considered a cytokine mediating the effects of TGF-β. METHODS: Here, we studied the CTGF expression in an open-skull weight-drop-induced TBI, with a focus on the early phase, most amenable to therapy. RESULTS: In normal rat brains of our study, CTGF(+) cells were rarely observed. Significant parenchymal accumulation of CTGF(+) non-neuron cells was observed 72 h post-TBI and increased continuously during the investigating time. We also observed that the accumulated CTGF(+) non-neuron cells were mainly distributed in the perilesional areas and showed activated astrocyte phenotypes with typical stellate morphologic characteristics. CONCLUSION: Our observations demonstrated the time-dependent and lesion-associated accumulation of cellular CTGF expression in TBI, suggesting a pathological role of CTGF in TBI. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3963462091241165 |
---|