Cargando…
A Novel Stable Binary BeB(2) phase
Potential crystal structures of BeB(2) were explored using ab initio evolutionary simulations. A new phase with a Cmcm space group was uncovered. It was determined that the Cmcm phase is mechanically and dynamically stable and has a lower enthalpy, from ambient pressure up to 13 GPa, than any previo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227016/ https://www.ncbi.nlm.nih.gov/pubmed/25385147 http://dx.doi.org/10.1038/srep06993 |
Sumario: | Potential crystal structures of BeB(2) were explored using ab initio evolutionary simulations. A new phase with a Cmcm space group was uncovered. It was determined that the Cmcm phase is mechanically and dynamically stable and has a lower enthalpy, from ambient pressure up to 13 GPa, than any previously proposed phases, as measured using first-principles calculations. The crystal structure, phonon dispersion, phase transitions, and mechanical and electronic properties of this phase were investigated. It was determined that the Cmcm phase may transform into the [Image: see text] phase at pressures higher than 13 GPa. The band structures and density of states reveal that the Cmcm phase is metallic. In addition, the Vickers hardness was calculated using three empirical models. To explain the origin of the hardness, charge density difference maps and a Mulliken population analysis were carried out, which demonstrated that there are strong covalent interactions between B atoms. By analyzing the Crystal Orbital Hamilton Population (COHP) diagrams, it was determined that the total interaction of the Be-B bonds is stronger than that of the B-B bonds, indicating a very complex bonding feature in the new phase. It was predicted that the new Cmcm phase is nearly absent of superconductivity. |
---|