Cargando…
Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)
Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227181/ https://www.ncbi.nlm.nih.gov/pubmed/25268626 http://dx.doi.org/10.3390/ijms151017622 |
_version_ | 1782343751958528000 |
---|---|
author | Valliyodan, Babu Van Toai, Tara T. Alves, Jose Donizeti de Fátima P. Goulart, Patricia Lee, Jeong Dong Fritschi, Felix B. Rahman, Mohammed Atiqur Islam, Rafiq Shannon, J. Grover Nguyen, Henry T. |
author_facet | Valliyodan, Babu Van Toai, Tara T. Alves, Jose Donizeti de Fátima P. Goulart, Patricia Lee, Jeong Dong Fritschi, Felix B. Rahman, Mohammed Atiqur Islam, Rafiq Shannon, J. Grover Nguyen, Henry T. |
author_sort | Valliyodan, Babu |
collection | PubMed |
description | Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars. |
format | Online Article Text |
id | pubmed-4227181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42271812014-11-12 Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) Valliyodan, Babu Van Toai, Tara T. Alves, Jose Donizeti de Fátima P. Goulart, Patricia Lee, Jeong Dong Fritschi, Felix B. Rahman, Mohammed Atiqur Islam, Rafiq Shannon, J. Grover Nguyen, Henry T. Int J Mol Sci Article Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars. MDPI 2014-09-29 /pmc/articles/PMC4227181/ /pubmed/25268626 http://dx.doi.org/10.3390/ijms151017622 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Valliyodan, Babu Van Toai, Tara T. Alves, Jose Donizeti de Fátima P. Goulart, Patricia Lee, Jeong Dong Fritschi, Felix B. Rahman, Mohammed Atiqur Islam, Rafiq Shannon, J. Grover Nguyen, Henry T. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) |
title | Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) |
title_full | Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) |
title_fullStr | Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) |
title_full_unstemmed | Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) |
title_short | Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max) |
title_sort | expression of root-related transcription factors associated with flooding tolerance of soybean (glycine max) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227181/ https://www.ncbi.nlm.nih.gov/pubmed/25268626 http://dx.doi.org/10.3390/ijms151017622 |
work_keys_str_mv | AT valliyodanbabu expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT vantoaitarat expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT alvesjosedonizeti expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT defatimapgoulartpatricia expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT leejeongdong expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT fritschifelixb expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT rahmanmohammedatiqur expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT islamrafiq expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT shannonjgrover expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax AT nguyenhenryt expressionofrootrelatedtranscriptionfactorsassociatedwithfloodingtoleranceofsoybeanglycinemax |