Cargando…

Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes

The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This...

Descripción completa

Detalles Bibliográficos
Autores principales: Gudmann, Natasja Stæhr, Wang, Jianxia, Hoielt, Sabine, Chen, Pingping, Siebuhr, Anne Sofie, He, Yi, Christiansen, Thorbjørn G., Karsdal, Morten Asser, Bay-Jensen, Anne Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227247/
https://www.ncbi.nlm.nih.gov/pubmed/25329619
http://dx.doi.org/10.3390/ijms151018789
_version_ 1782343767534075904
author Gudmann, Natasja Stæhr
Wang, Jianxia
Hoielt, Sabine
Chen, Pingping
Siebuhr, Anne Sofie
He, Yi
Christiansen, Thorbjørn G.
Karsdal, Morten Asser
Bay-Jensen, Anne Christine
author_facet Gudmann, Natasja Stæhr
Wang, Jianxia
Hoielt, Sabine
Chen, Pingping
Siebuhr, Anne Sofie
He, Yi
Christiansen, Thorbjørn G.
Karsdal, Morten Asser
Bay-Jensen, Anne Christine
author_sort Gudmann, Natasja Stæhr
collection PubMed
description The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab) was raised in mouse, targeting specifically PIIBNP (QDVRQPG) and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP were quantified in human serum (0.6–2.2 nM), human amniotic fluid (163–188 nM) and sera from different animal species, e.g., fetal bovine serum (851–901 nM) with general good linearity (100% (SD 7.6) recovery) and good intra- and inter-assay variation (CV% < 10). Dose (0.1 to 100 ng/mL) and time (7, 14 and 21 days) dependent release of PIIBNP were evaluated in the conditioned medium from bovine cartilage explants (BEX) and human cartilage explants (HEX) upon stimulation with insulin-like growth factor (IGF-1), transforming growth factor (TGF)-β1 and fibroblastic growth factor-2 (FGF-2). TGF-β1 and IGF-1 in concentrations of 10–100 ng/mL significantly (p < 0.05) induced release of PIIBNP in BEX compared to conditions without treatment (WO). In HEX, IGF-1 100 ng/mL was able to induce a significant increase of PIIBNP after one week compared to WO. FGF-2 did not induce a PIIBNP release in our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation.
format Online
Article
Text
id pubmed-4227247
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-42272472014-11-12 Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes Gudmann, Natasja Stæhr Wang, Jianxia Hoielt, Sabine Chen, Pingping Siebuhr, Anne Sofie He, Yi Christiansen, Thorbjørn G. Karsdal, Morten Asser Bay-Jensen, Anne Christine Int J Mol Sci Article The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab) was raised in mouse, targeting specifically PIIBNP (QDVRQPG) and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP were quantified in human serum (0.6–2.2 nM), human amniotic fluid (163–188 nM) and sera from different animal species, e.g., fetal bovine serum (851–901 nM) with general good linearity (100% (SD 7.6) recovery) and good intra- and inter-assay variation (CV% < 10). Dose (0.1 to 100 ng/mL) and time (7, 14 and 21 days) dependent release of PIIBNP were evaluated in the conditioned medium from bovine cartilage explants (BEX) and human cartilage explants (HEX) upon stimulation with insulin-like growth factor (IGF-1), transforming growth factor (TGF)-β1 and fibroblastic growth factor-2 (FGF-2). TGF-β1 and IGF-1 in concentrations of 10–100 ng/mL significantly (p < 0.05) induced release of PIIBNP in BEX compared to conditions without treatment (WO). In HEX, IGF-1 100 ng/mL was able to induce a significant increase of PIIBNP after one week compared to WO. FGF-2 did not induce a PIIBNP release in our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation. MDPI 2014-10-17 /pmc/articles/PMC4227247/ /pubmed/25329619 http://dx.doi.org/10.3390/ijms151018789 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gudmann, Natasja Stæhr
Wang, Jianxia
Hoielt, Sabine
Chen, Pingping
Siebuhr, Anne Sofie
He, Yi
Christiansen, Thorbjørn G.
Karsdal, Morten Asser
Bay-Jensen, Anne Christine
Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
title Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
title_full Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
title_fullStr Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
title_full_unstemmed Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
title_short Cartilage Turnover Reflected by Metabolic Processing of Type II Collagen: A Novel Marker of Anabolic Function in Chondrocytes
title_sort cartilage turnover reflected by metabolic processing of type ii collagen: a novel marker of anabolic function in chondrocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227247/
https://www.ncbi.nlm.nih.gov/pubmed/25329619
http://dx.doi.org/10.3390/ijms151018789
work_keys_str_mv AT gudmannnatasjastæhr cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT wangjianxia cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT hoieltsabine cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT chenpingping cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT siebuhrannesofie cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT heyi cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT christiansenthorbjørng cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT karsdalmortenasser cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes
AT bayjensenannechristine cartilageturnoverreflectedbymetabolicprocessingoftypeiicollagenanovelmarkerofanabolicfunctioninchondrocytes