Cargando…
Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo
Notch signaling has been reported to be oncogenic or tumor suppressive, depending on the tissue context. To investigate the effects of Notch2 knockdown on U87 human glioma cell proliferation in vitro and in vivo, and the associated mechanisms, U87 cells were stably transfected with p green fluoresce...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227426/ https://www.ncbi.nlm.nih.gov/pubmed/25323114 http://dx.doi.org/10.3892/mmr.2014.2661 |
_version_ | 1782343803556855808 |
---|---|
author | LI, XUEZHEN HE, XIN TIAN, WEI WANG, JIANZHEN |
author_facet | LI, XUEZHEN HE, XIN TIAN, WEI WANG, JIANZHEN |
author_sort | LI, XUEZHEN |
collection | PubMed |
description | Notch signaling has been reported to be oncogenic or tumor suppressive, depending on the tissue context. To investigate the effects of Notch2 knockdown on U87 human glioma cell proliferation in vitro and in vivo, and the associated mechanisms, U87 cells were stably transfected with p green fluorescent protein (GFP)-V-RS Notch2 short hairpin (sh) RNA plasmid and pGFP-V-RS scramble-shRNA plasmid. The former was referred to as the Notch2-shRNA group and the latter as the negative-shRNA group. mRNA and protein expression, cell proliferation, cell cycle and apoptosis were measured by reverse transcription-polymerase chain reaction, western blot analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and flow cytometry using propidium iodide, respectively. Tumor volume, tumor weight and cumulative survival rate were determined in a nude mouse xenograft tumor model. Notch2 mRNA and protein expression in the Notch2-shRNA group were reduced by 87.6 and 94.5% compared with the negative-shRNA group (P<0.001). Notch2 knockdown significantly inhibited U87 cell proliferation after three days of culture (P<0.05). Notch2 silencing induced cell cycle arrest at G(0)/G(1) phase by upregulation of p21 protein expression and downregulation of mini chromosome maintenance complex 2 and cyclin-D1 protein expression. Furthermore, knockdown of Notch2 also induced U87 cell apoptosis. On day 50 after inoculation, tumor weight in the Notch2-shRNA group was significantly lower than that in the negative-shRNA group (0.55±0.10 vs. 1.23±0.52 g; P<0.01). The cumulative survival rate was significantly longer in the Notch2-shRNA group compared with the negative-shRNA group (log rank test P=0.01). In conclusion, Notch2 silencing inhibited U87 glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo. Thus, Notch2 may be a key therapeutic target for the treatment of glioma. |
format | Online Article Text |
id | pubmed-4227426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-42274262014-11-12 Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo LI, XUEZHEN HE, XIN TIAN, WEI WANG, JIANZHEN Mol Med Rep Articles Notch signaling has been reported to be oncogenic or tumor suppressive, depending on the tissue context. To investigate the effects of Notch2 knockdown on U87 human glioma cell proliferation in vitro and in vivo, and the associated mechanisms, U87 cells were stably transfected with p green fluorescent protein (GFP)-V-RS Notch2 short hairpin (sh) RNA plasmid and pGFP-V-RS scramble-shRNA plasmid. The former was referred to as the Notch2-shRNA group and the latter as the negative-shRNA group. mRNA and protein expression, cell proliferation, cell cycle and apoptosis were measured by reverse transcription-polymerase chain reaction, western blot analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and flow cytometry using propidium iodide, respectively. Tumor volume, tumor weight and cumulative survival rate were determined in a nude mouse xenograft tumor model. Notch2 mRNA and protein expression in the Notch2-shRNA group were reduced by 87.6 and 94.5% compared with the negative-shRNA group (P<0.001). Notch2 knockdown significantly inhibited U87 cell proliferation after three days of culture (P<0.05). Notch2 silencing induced cell cycle arrest at G(0)/G(1) phase by upregulation of p21 protein expression and downregulation of mini chromosome maintenance complex 2 and cyclin-D1 protein expression. Furthermore, knockdown of Notch2 also induced U87 cell apoptosis. On day 50 after inoculation, tumor weight in the Notch2-shRNA group was significantly lower than that in the negative-shRNA group (0.55±0.10 vs. 1.23±0.52 g; P<0.01). The cumulative survival rate was significantly longer in the Notch2-shRNA group compared with the negative-shRNA group (log rank test P=0.01). In conclusion, Notch2 silencing inhibited U87 glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo. Thus, Notch2 may be a key therapeutic target for the treatment of glioma. D.A. Spandidos 2014-12 2014-10-15 /pmc/articles/PMC4227426/ /pubmed/25323114 http://dx.doi.org/10.3892/mmr.2014.2661 Text en Copyright © 2014, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles LI, XUEZHEN HE, XIN TIAN, WEI WANG, JIANZHEN Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
title | Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
title_full | Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
title_fullStr | Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
title_full_unstemmed | Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
title_short | Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
title_sort | short hairpin rna targeting notch2 inhibits u87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227426/ https://www.ncbi.nlm.nih.gov/pubmed/25323114 http://dx.doi.org/10.3892/mmr.2014.2661 |
work_keys_str_mv | AT lixuezhen shorthairpinrnatargetingnotch2inhibitsu87humangliomacellproliferationbyinducingcellcyclearrestandapoptosisinvitroandinvivo AT hexin shorthairpinrnatargetingnotch2inhibitsu87humangliomacellproliferationbyinducingcellcyclearrestandapoptosisinvitroandinvivo AT tianwei shorthairpinrnatargetingnotch2inhibitsu87humangliomacellproliferationbyinducingcellcyclearrestandapoptosisinvitroandinvivo AT wangjianzhen shorthairpinrnatargetingnotch2inhibitsu87humangliomacellproliferationbyinducingcellcyclearrestandapoptosisinvitroandinvivo |