Cargando…
A Three-Dimensional Computational Model of Collagen Network Mechanics
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227658/ https://www.ncbi.nlm.nih.gov/pubmed/25386649 http://dx.doi.org/10.1371/journal.pone.0111896 |
_version_ | 1782343846221316096 |
---|---|
author | Lee, Byoungkoo Zhou, Xin Riching, Kristin Eliceiri, Kevin W. Keely, Patricia J. Guelcher, Scott A. Weaver, Alissa M. Jiang, Yi |
author_facet | Lee, Byoungkoo Zhou, Xin Riching, Kristin Eliceiri, Kevin W. Keely, Patricia J. Guelcher, Scott A. Weaver, Alissa M. Jiang, Yi |
author_sort | Lee, Byoungkoo |
collection | PubMed |
description | Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. |
format | Online Article Text |
id | pubmed-4227658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42276582014-11-18 A Three-Dimensional Computational Model of Collagen Network Mechanics Lee, Byoungkoo Zhou, Xin Riching, Kristin Eliceiri, Kevin W. Keely, Patricia J. Guelcher, Scott A. Weaver, Alissa M. Jiang, Yi PLoS One Research Article Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. Public Library of Science 2014-11-11 /pmc/articles/PMC4227658/ /pubmed/25386649 http://dx.doi.org/10.1371/journal.pone.0111896 Text en © 2014 Lee et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lee, Byoungkoo Zhou, Xin Riching, Kristin Eliceiri, Kevin W. Keely, Patricia J. Guelcher, Scott A. Weaver, Alissa M. Jiang, Yi A Three-Dimensional Computational Model of Collagen Network Mechanics |
title | A Three-Dimensional Computational Model of Collagen Network Mechanics |
title_full | A Three-Dimensional Computational Model of Collagen Network Mechanics |
title_fullStr | A Three-Dimensional Computational Model of Collagen Network Mechanics |
title_full_unstemmed | A Three-Dimensional Computational Model of Collagen Network Mechanics |
title_short | A Three-Dimensional Computational Model of Collagen Network Mechanics |
title_sort | three-dimensional computational model of collagen network mechanics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227658/ https://www.ncbi.nlm.nih.gov/pubmed/25386649 http://dx.doi.org/10.1371/journal.pone.0111896 |
work_keys_str_mv | AT leebyoungkoo athreedimensionalcomputationalmodelofcollagennetworkmechanics AT zhouxin athreedimensionalcomputationalmodelofcollagennetworkmechanics AT richingkristin athreedimensionalcomputationalmodelofcollagennetworkmechanics AT eliceirikevinw athreedimensionalcomputationalmodelofcollagennetworkmechanics AT keelypatriciaj athreedimensionalcomputationalmodelofcollagennetworkmechanics AT guelcherscotta athreedimensionalcomputationalmodelofcollagennetworkmechanics AT weaveralissam athreedimensionalcomputationalmodelofcollagennetworkmechanics AT jiangyi athreedimensionalcomputationalmodelofcollagennetworkmechanics AT leebyoungkoo threedimensionalcomputationalmodelofcollagennetworkmechanics AT zhouxin threedimensionalcomputationalmodelofcollagennetworkmechanics AT richingkristin threedimensionalcomputationalmodelofcollagennetworkmechanics AT eliceirikevinw threedimensionalcomputationalmodelofcollagennetworkmechanics AT keelypatriciaj threedimensionalcomputationalmodelofcollagennetworkmechanics AT guelcherscotta threedimensionalcomputationalmodelofcollagennetworkmechanics AT weaveralissam threedimensionalcomputationalmodelofcollagennetworkmechanics AT jiangyi threedimensionalcomputationalmodelofcollagennetworkmechanics |