Cargando…

Revealing instances of coordination among multiple cortical areas

Cognitive functions must involve interactions between several (perhaps many) cortical regions. The instances of such interactions may not be tightly time locked to any external cue. Thus averaging over repeated trials of brain activity or its spectrograms may miss these instances. Here, coordinated...

Descripción completa

Detalles Bibliográficos
Autor principal: Abeles, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228107/
https://www.ncbi.nlm.nih.gov/pubmed/24178848
http://dx.doi.org/10.1007/s00422-013-0574-2
Descripción
Sumario:Cognitive functions must involve interactions between several (perhaps many) cortical regions. The instances of such interactions may not be tightly time locked to any external cue. Thus averaging over repeated trials of brain activity or its spectrograms may miss these instances. Here, coordinated activity among multiple cortical locations is revealed in ongoing activity with millisecond accuracy without the need for averaging over time or frequencies. This is based on reconstructions of the cortical current dipole amplitudes at multiple points from MEG recordings. In these current dipole traces, instances of brief activity undulations (BAUs) are automatically detected and used to reveal where and when cortical points interact. The article shows that these BAUs truly represent the reorganization of activity at the cortex and are strongly connected to behavior.