Cargando…
Mobster: accurate detection of mobile element insertions in next generation sequencing data
Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in...
Autores principales: | Thung, Djie Tjwan, de Ligt, Joep, Vissers, Lisenka EM, Steehouwer, Marloes, Kroon, Mark, de Vries, Petra, Slagboom, Eline P, Ye, Kai, Veltman, Joris A, Hehir-Kwa, Jayne Y |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228151/ https://www.ncbi.nlm.nih.gov/pubmed/25348035 http://dx.doi.org/10.1186/s13059-014-0488-x |
Ejemplares similares
-
Platform comparison of detecting copy number variants with microarrays and whole-exome sequencing
por: de Ligt, Joep, et al.
Publicado: (2014) -
Accurate Distinction of Pathogenic from Benign CNVs in Mental Retardation
por: Hehir-Kwa, Jayne Y., et al.
Publicado: (2010) -
A high-quality human reference panel reveals the complexity and distribution of genomic structural variants
por: Hehir-Kwa, Jayne Y., et al.
Publicado: (2016) -
Forging Links between Human Mental Retardation–Associated CNVs and Mouse Gene Knockout Models
por: Webber, Caleb, et al.
Publicado: (2009) -
The MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-genome sequencing data
por: Caravagna, Giulio, et al.
Publicado: (2020)