Cargando…
Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes
BACKGROUND: Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven man...
Autores principales: | Williams-DeVane, ClarLynda R, Reif, David M, Cohen Hubal, Elaine, Bushel, Pierre R, Hudgens, Edward E, Gallagher, Jane E, Edwards, Stephen W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228284/ https://www.ncbi.nlm.nih.gov/pubmed/24188919 http://dx.doi.org/10.1186/1752-0509-7-119 |
Ejemplares similares
-
Data-Driven Asthma Endotypes Defined from Blood Biomarker and Gene Expression Data
por: George, Barbara Jane, et al.
Publicado: (2015) -
Overall gestational weight gain mediates the relationship between maternal and child obesity
por: Josey, Michele J., et al.
Publicado: (2019) -
The diversity and disparity in biomedical informatics (DDBI) workshop
por: Southerland, William M., et al.
Publicado: (2018) -
Gender Differences in Preclinical Markers of Kidney Injury in a Rural North Carolina African-American Cohort
por: Pointer, Mildred A., et al.
Publicado: (2015) -
Grammatical evolution decision trees for detecting gene-gene interactions
por: Motsinger-Reif, Alison A, et al.
Publicado: (2010)