Cargando…
Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow
The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228761/ https://www.ncbi.nlm.nih.gov/pubmed/24597663 http://dx.doi.org/10.1111/mec.12710 |
_version_ | 1782344041784934400 |
---|---|
author | De La Torre, Amanda R Roberts, David R Aitken, Sally N |
author_facet | De La Torre, Amanda R Roberts, David R Aitken, Sally N |
author_sort | De La Torre, Amanda R |
collection | PubMed |
description | The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridizing spruce species Picea glauca and P. engelmannii in western North America. Genome-wide estimates of admixture based on a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes were used to assess levels of admixture and introgression and to identify loci putatively involved in adaptive differences or reproductive barriers between species. Our palaeoclimatic modelling suggests that these two closely related species have a long history of hybridization and introgression, dating to at least 21 000 years ago, yet species integrity is maintained by a combination of strong environmental selection and reduced current interspecific gene flow. Twenty loci showed evidence of divergent selection, including six loci that were both F(st) outliers and associated with climatic gradients, and fourteen loci that were either outliers or showed associations with climate. These included genes responsible for carbohydrate metabolism, signal transduction and transcription factors. |
format | Online Article Text |
id | pubmed-4228761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42287612014-12-15 Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow De La Torre, Amanda R Roberts, David R Aitken, Sally N Mol Ecol Original Articles The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridizing spruce species Picea glauca and P. engelmannii in western North America. Genome-wide estimates of admixture based on a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes were used to assess levels of admixture and introgression and to identify loci putatively involved in adaptive differences or reproductive barriers between species. Our palaeoclimatic modelling suggests that these two closely related species have a long history of hybridization and introgression, dating to at least 21 000 years ago, yet species integrity is maintained by a combination of strong environmental selection and reduced current interspecific gene flow. Twenty loci showed evidence of divergent selection, including six loci that were both F(st) outliers and associated with climatic gradients, and fourteen loci that were either outliers or showed associations with climate. These included genes responsible for carbohydrate metabolism, signal transduction and transcription factors. BlackWell Publishing Ltd 2014-04 2014-04-03 /pmc/articles/PMC4228761/ /pubmed/24597663 http://dx.doi.org/10.1111/mec.12710 Text en © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles De La Torre, Amanda R Roberts, David R Aitken, Sally N Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
title | Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
title_full | Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
title_fullStr | Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
title_full_unstemmed | Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
title_short | Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
title_sort | genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228761/ https://www.ncbi.nlm.nih.gov/pubmed/24597663 http://dx.doi.org/10.1111/mec.12710 |
work_keys_str_mv | AT delatorreamandar genomewideadmixtureandecologicalnichemodellingrevealthemaintenanceofspeciesboundariesdespitelonghistoryofinterspecificgeneflow AT robertsdavidr genomewideadmixtureandecologicalnichemodellingrevealthemaintenanceofspeciesboundariesdespitelonghistoryofinterspecificgeneflow AT aitkensallyn genomewideadmixtureandecologicalnichemodellingrevealthemaintenanceofspeciesboundariesdespitelonghistoryofinterspecificgeneflow |