Cargando…
Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia
Habituation of a behavioral response to a repetitive stimulus enables animals to ignore irrelevant stimuli and focus on behaviorally important events. In Aplysia, habituation is mediated by rapid depression of sensory synapses, which could leave an animal unresponsive to important repetitive stimuli...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228944/ https://www.ncbi.nlm.nih.gov/pubmed/22772333 http://dx.doi.org/10.1038/nn.3158 |
_version_ | 1782344064800129024 |
---|---|
author | Wan, Qin Jiang, Xue-Ying Negroiu, Andreea M. Lu, Shao-Gang McKay, Kimberly S. Abrams, Thomas W. |
author_facet | Wan, Qin Jiang, Xue-Ying Negroiu, Andreea M. Lu, Shao-Gang McKay, Kimberly S. Abrams, Thomas W. |
author_sort | Wan, Qin |
collection | PubMed |
description | Habituation of a behavioral response to a repetitive stimulus enables animals to ignore irrelevant stimuli and focus on behaviorally important events. In Aplysia, habituation is mediated by rapid depression of sensory synapses, which could leave an animal unresponsive to important repetitive stimuli, making it vulnerable to injury. We identified a form of plasticity that prevents synaptic depression depending on the precise stimulus strength. Burst-dependent protection from depression is initiated by trains of 2–4 action potentials, and is distinct from previously described forms of synaptic enhancement. The blockade of depression is mediated by presynaptic Ca(2+) influx and protein kinase C (PKC), and requires localization of PKC via a PDZ domain interaction with Aplysia PICK1. During protection from depression, PKC acts as a highly sensitive detector of the precise pattern of sensory neuron firing. Behaviorally, burst-dependent protection reduces habituation, enabling animals to maintain responsiveness to stimuli that are functionally important. |
format | Online Article Text |
id | pubmed-4228944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
record_format | MEDLINE/PubMed |
spelling | pubmed-42289442014-11-12 Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia Wan, Qin Jiang, Xue-Ying Negroiu, Andreea M. Lu, Shao-Gang McKay, Kimberly S. Abrams, Thomas W. Nat Neurosci Article Habituation of a behavioral response to a repetitive stimulus enables animals to ignore irrelevant stimuli and focus on behaviorally important events. In Aplysia, habituation is mediated by rapid depression of sensory synapses, which could leave an animal unresponsive to important repetitive stimuli, making it vulnerable to injury. We identified a form of plasticity that prevents synaptic depression depending on the precise stimulus strength. Burst-dependent protection from depression is initiated by trains of 2–4 action potentials, and is distinct from previously described forms of synaptic enhancement. The blockade of depression is mediated by presynaptic Ca(2+) influx and protein kinase C (PKC), and requires localization of PKC via a PDZ domain interaction with Aplysia PICK1. During protection from depression, PKC acts as a highly sensitive detector of the precise pattern of sensory neuron firing. Behaviorally, burst-dependent protection reduces habituation, enabling animals to maintain responsiveness to stimuli that are functionally important. 2012-07-08 /pmc/articles/PMC4228944/ /pubmed/22772333 http://dx.doi.org/10.1038/nn.3158 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Wan, Qin Jiang, Xue-Ying Negroiu, Andreea M. Lu, Shao-Gang McKay, Kimberly S. Abrams, Thomas W. Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia |
title | Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia |
title_full | Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia |
title_fullStr | Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia |
title_full_unstemmed | Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia |
title_short | Protein Kinase C Acts as a Molecular Detector of Firing Patterns to Mediate Sensory Gating in Aplysia |
title_sort | protein kinase c acts as a molecular detector of firing patterns to mediate sensory gating in aplysia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228944/ https://www.ncbi.nlm.nih.gov/pubmed/22772333 http://dx.doi.org/10.1038/nn.3158 |
work_keys_str_mv | AT wanqin proteinkinasecactsasamoleculardetectoroffiringpatternstomediatesensorygatinginaplysia AT jiangxueying proteinkinasecactsasamoleculardetectoroffiringpatternstomediatesensorygatinginaplysia AT negroiuandreeam proteinkinasecactsasamoleculardetectoroffiringpatternstomediatesensorygatinginaplysia AT lushaogang proteinkinasecactsasamoleculardetectoroffiringpatternstomediatesensorygatinginaplysia AT mckaykimberlys proteinkinasecactsasamoleculardetectoroffiringpatternstomediatesensorygatinginaplysia AT abramsthomasw proteinkinasecactsasamoleculardetectoroffiringpatternstomediatesensorygatinginaplysia |