Cargando…
Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228985/ https://www.ncbi.nlm.nih.gov/pubmed/25064848 http://dx.doi.org/10.1093/mp/ssu080 |
_version_ | 1782344068519428096 |
---|---|
author | Stanko, Vera Giuliani, Concetta Retzer, Katarzyna Djamei, Armin Wahl, Vanessa Wurzinger, Bernhard Wilson, Cathal Heberle-Bors, Erwin Teige, Markus Kragler, Friedrich |
author_facet | Stanko, Vera Giuliani, Concetta Retzer, Katarzyna Djamei, Armin Wahl, Vanessa Wurzinger, Bernhard Wilson, Cathal Heberle-Bors, Erwin Teige, Markus Kragler, Friedrich |
author_sort | Stanko, Vera |
collection | PubMed |
description | Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2–AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency. |
format | Online Article Text |
id | pubmed-4228985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42289852014-11-13 Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis Stanko, Vera Giuliani, Concetta Retzer, Katarzyna Djamei, Armin Wahl, Vanessa Wurzinger, Bernhard Wilson, Cathal Heberle-Bors, Erwin Teige, Markus Kragler, Friedrich Mol Plant Research Article Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2–AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency. Oxford University Press 2014-11 2014-07-26 /pmc/articles/PMC4228985/ /pubmed/25064848 http://dx.doi.org/10.1093/mp/ssu080 Text en © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Research Article Stanko, Vera Giuliani, Concetta Retzer, Katarzyna Djamei, Armin Wahl, Vanessa Wurzinger, Bernhard Wilson, Cathal Heberle-Bors, Erwin Teige, Markus Kragler, Friedrich Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis |
title | Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
|
title_full | Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
|
title_fullStr | Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
|
title_full_unstemmed | Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
|
title_short | Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
|
title_sort | timing is everything: highly specific and transient expression of a map kinase determines auxin-induced leaf venation patterns in arabidopsis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228985/ https://www.ncbi.nlm.nih.gov/pubmed/25064848 http://dx.doi.org/10.1093/mp/ssu080 |
work_keys_str_mv | AT stankovera timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT giulianiconcetta timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT retzerkatarzyna timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT djameiarmin timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT wahlvanessa timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT wurzingerbernhard timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT wilsoncathal timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT heberleborserwin timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT teigemarkus timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis AT kraglerfriedrich timingiseverythinghighlyspecificandtransientexpressionofamapkinasedeterminesauxininducedleafvenationpatternsinarabidopsis |