Quasi-Linear Vacancy Dynamics Modeling and Circuit Analysis of the Bipolar Memristor

The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit mode...

Descripción completa

Detalles Bibliográficos
Autor principal: Abraham, Isaac
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229088/
https://www.ncbi.nlm.nih.gov/pubmed/25390634
http://dx.doi.org/10.1371/journal.pone.0111607
Descripción
Sumario:The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis.