Cargando…

Discrimination of cortical laminae using MEG

Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Troebinger, Luzia, López, José David, Lutti, Antoine, Bestmann, Sven, Barnes, Gareth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229503/
https://www.ncbi.nlm.nih.gov/pubmed/25038441
http://dx.doi.org/10.1016/j.neuroimage.2014.07.015
Descripción
Sumario:Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2 mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data.