Cargando…
Alternative Pathway for the Reaction Catalyzed by DNA Dealkylase AlkB from Ab Initio QM/MM Calculations
[Image: see text] AlkB is the title enzyme of a family of DNA dealkylases that catalyze the direct oxidative dealkylation of nucleobases. The conventional mechanism for the dealkylation of N(1)-methyl adenine (1-meA) catalyzed by AlkB after the formation of Fe(IV)–oxo is comprised by a reorientation...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230374/ https://www.ncbi.nlm.nih.gov/pubmed/25400523 http://dx.doi.org/10.1021/ct500572t |
Sumario: | [Image: see text] AlkB is the title enzyme of a family of DNA dealkylases that catalyze the direct oxidative dealkylation of nucleobases. The conventional mechanism for the dealkylation of N(1)-methyl adenine (1-meA) catalyzed by AlkB after the formation of Fe(IV)–oxo is comprised by a reorientation of the oxo moiety, hydrogen abstraction, OH rebound from the Fe atom to the methyl adduct, and the dissociation of the resulting methoxide to obtain the repaired adenine base and formaldehyde. An alternative pathway with hydroxide as a ligand bound to the iron atom is proposed and investigated by QM/MM simulations. The results show OH(–) has a small impact on the barriers for the hydrogen abstraction and OH rebound steps. The effects of the enzyme and the OH(–) ligand on the hydrogen abstraction by the Fe(IV)–oxo moiety are discussed in detail. The new OH rebound step is coupled with a proton transfer to the OH(–) ligand and results in a novel zwitterion intermediate. This zwitterion structure can also be characterized as Fe–O–C complex and facilitates the formation of formaldehyde. In contrast, for the pathway with H(2)O bound to iron, the hydroxyl product of the OH rebound step first needs to unbind from the metal center before transferring a proton to Glu136 or other residue/substrate. The consistency between our theoretical results and experimental findings is discussed. This study provides new insights into the oxidative repair mechanism of DNA repair by nonheme Fe(II) and α-ketoglutarate (α-KG) dependent dioxygenases and a possible explanation for the substrate preference of AlkB. |
---|