Cargando…
A feeder-free, human plasma-derived hydrogel for maintenance of a human embryonic stem cell phenotype in vitro
BACKGROUND: Human embryonic stem cells (hESCs) represent a tremendous resource for cell therapies and the study of human development; however to maintain their undifferentiated state in vitro they routinely require the use of mouse embryonic fibroblast (MEF) feeder-layers and exogenous protein media...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230398/ https://www.ncbi.nlm.nih.gov/pubmed/25408869 http://dx.doi.org/10.1186/2045-9769-1-6 |
Sumario: | BACKGROUND: Human embryonic stem cells (hESCs) represent a tremendous resource for cell therapies and the study of human development; however to maintain their undifferentiated state in vitro they routinely require the use of mouse embryonic fibroblast (MEF) feeder-layers and exogenous protein media supplementation. RESULTS: These well established requirements can be overcome and in this study, it will be demonstrated that phenotypic stability of hESCs can be maintained using a novel, human plasma protein-based hydrogel as an extracellular culture matrix without the use of feeder cell co-culture. hESCs were resuspended in human platelet poor plasma (PPP), which was gelled by the addition of calcium containing DMEM-based hESC culture medium. Phenotypic and genomic expression of the pluripotency markers OCT4, NANOG and SOX2 were measured using immunohistochemistry and qRT-PCR respectively. Typical hESC morphology was demonstrated throughout in vitro culture and both viability and phenotypic stability were maintained throughout extended culture, up to 25 passages. CONCLUSIONS: PPP-derived hydrogel has demonstrated to be an efficacious alternative to MEF co-culture with its hydrophilicity allowing for this substrate to be delivered via minimally invasive procedures in a liquid phase with polymerization ensuing in situ. Together this provides a novel technique for the study of this unique group of stem cells in either 2D or 3D both in vitro and in vivo. |
---|