Cargando…
Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz
PURPOSE: To treat malaria, HIV-infected patients normally receive artemether (80 mg twice daily) concurrently with antiretroviral therapy and drug-drug interactions can potentially occur. Artemether is a substrate of CYP3A4 and CYP2B6, antiretrovirals such as efavirenz induce these enzymes and have...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230487/ https://www.ncbi.nlm.nih.gov/pubmed/25505649 http://dx.doi.org/10.1186/2193-9616-1-4 |
_version_ | 1782344277908520960 |
---|---|
author | Siccardi, Marco Olagunju, Adeniyi Seden, Kay Ebrahimjee, Farid Rannard, Steve Back, David Owen, Andrew |
author_facet | Siccardi, Marco Olagunju, Adeniyi Seden, Kay Ebrahimjee, Farid Rannard, Steve Back, David Owen, Andrew |
author_sort | Siccardi, Marco |
collection | PubMed |
description | PURPOSE: To treat malaria, HIV-infected patients normally receive artemether (80 mg twice daily) concurrently with antiretroviral therapy and drug-drug interactions can potentially occur. Artemether is a substrate of CYP3A4 and CYP2B6, antiretrovirals such as efavirenz induce these enzymes and have the potential to reduce artemether pharmacokinetic exposure. The aim of this study was to develop an in vitro in vivo extrapolation (IVIVE) approach to model the interaction between efavirenz and artemether. Artemether dose adjustments were then simulated in order to predict optimal dosing in co-infected patients and inform future interaction study design. METHODS: In vitro data describing the chemical properties, absorption, distribution, metabolism and elimination of efavirenz and artemether were obtained from published literature and included in a physiologically based pharmacokinetic model (PBPK) to predict drug disposition simulating virtual clinical trials. Administration of efavirenz and artemether, alone or in combination, were simulated to mirror previous clinical studies and facilitate validation of the model and realistic interpretation of the simulation. Efavirenz (600 mg once daily) was administered to 50 virtual subjects for 14 days. This was followed by concomitant administration of artemether (80 mg eight hourly) for the first two doses and 80 mg (twice daily) for another two days. RESULTS: Simulated pharmacokinetics and the drug-drug interaction were in concordance with available clinical data. Efavirenz induced first pass metabolism and hepatic clearance, reducing artemether C(max) by 60% and AUC by 80%. Dose increases of artemether, to correct for the interaction, were simulated and a dose of 240 mg was predicted to be sufficient to overcome the interaction and allow therapeutic plasma concentrations of artemether. CONCLUSIONS: The model presented here provides a rational platform to inform the design for a clinical drug interaction study that may save time and resource while the optimal dose is determined empirically. Wider application of IVIVE could help researchers gain a better understanding of the molecular mechanisms underpinning variability in drug disposition. |
format | Online Article Text |
id | pubmed-4230487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-42304872014-12-11 Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz Siccardi, Marco Olagunju, Adeniyi Seden, Kay Ebrahimjee, Farid Rannard, Steve Back, David Owen, Andrew In Silico Pharmacol Original Research PURPOSE: To treat malaria, HIV-infected patients normally receive artemether (80 mg twice daily) concurrently with antiretroviral therapy and drug-drug interactions can potentially occur. Artemether is a substrate of CYP3A4 and CYP2B6, antiretrovirals such as efavirenz induce these enzymes and have the potential to reduce artemether pharmacokinetic exposure. The aim of this study was to develop an in vitro in vivo extrapolation (IVIVE) approach to model the interaction between efavirenz and artemether. Artemether dose adjustments were then simulated in order to predict optimal dosing in co-infected patients and inform future interaction study design. METHODS: In vitro data describing the chemical properties, absorption, distribution, metabolism and elimination of efavirenz and artemether were obtained from published literature and included in a physiologically based pharmacokinetic model (PBPK) to predict drug disposition simulating virtual clinical trials. Administration of efavirenz and artemether, alone or in combination, were simulated to mirror previous clinical studies and facilitate validation of the model and realistic interpretation of the simulation. Efavirenz (600 mg once daily) was administered to 50 virtual subjects for 14 days. This was followed by concomitant administration of artemether (80 mg eight hourly) for the first two doses and 80 mg (twice daily) for another two days. RESULTS: Simulated pharmacokinetics and the drug-drug interaction were in concordance with available clinical data. Efavirenz induced first pass metabolism and hepatic clearance, reducing artemether C(max) by 60% and AUC by 80%. Dose increases of artemether, to correct for the interaction, were simulated and a dose of 240 mg was predicted to be sufficient to overcome the interaction and allow therapeutic plasma concentrations of artemether. CONCLUSIONS: The model presented here provides a rational platform to inform the design for a clinical drug interaction study that may save time and resource while the optimal dose is determined empirically. Wider application of IVIVE could help researchers gain a better understanding of the molecular mechanisms underpinning variability in drug disposition. Springer-Verlag 2013-03-01 /pmc/articles/PMC4230487/ /pubmed/25505649 http://dx.doi.org/10.1186/2193-9616-1-4 Text en © Siccardi et al.; licensee Springer. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Siccardi, Marco Olagunju, Adeniyi Seden, Kay Ebrahimjee, Farid Rannard, Steve Back, David Owen, Andrew Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
title | Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
title_full | Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
title_fullStr | Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
title_full_unstemmed | Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
title_short | Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
title_sort | use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230487/ https://www.ncbi.nlm.nih.gov/pubmed/25505649 http://dx.doi.org/10.1186/2193-9616-1-4 |
work_keys_str_mv | AT siccardimarco useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz AT olagunjuadeniyi useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz AT sedenkay useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz AT ebrahimjeefarid useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz AT rannardsteve useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz AT backdavid useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz AT owenandrew useofaphysiologicallybasedpharmacokineticmodeltosimulateartemetherdoseadjustmentforovercomingthedrugdruginteractionwithefavirenz |