Cargando…
GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation
Results from Genome-Wide Association Studies (GWAS) have shown that complex diseases are often affected by many genetic variants with small or moderate effects. Identifications of these risk variants remain a very challenging problem. There is a need to develop more powerful statistical methods to l...
Autores principales: | Chung, Dongjun, Yang, Can, Li, Cong, Gelernter, Joel, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230845/ https://www.ncbi.nlm.nih.gov/pubmed/25393678 http://dx.doi.org/10.1371/journal.pgen.1004787 |
Ejemplares similares
-
graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture
por: Chung, Dongjun, et al.
Publicado: (2017) -
GPA-MDS: A Visualization Approach to Investigate Genetic Architecture among Phenotypes Using GWAS Results
por: Wei, Wei, et al.
Publicado: (2016) -
Implications of pleiotropy: challenges and opportunities for mining Big Data in biomedicine
por: Yang, Can, et al.
Publicado: (2015) -
ShinyGPA: An interactive visualization toolkit for investigating pleiotropic architecture using GWAS datasets
por: Kortemeier, Emma, et al.
Publicado: (2018) -
A review of post-GWAS prioritization approaches
por: Hou, Lin, et al.
Publicado: (2013)