Cargando…
Epigallocatechin-3-Gallate Attenuates Impairment of Learning and Memory in Chronic Unpredictable Mild Stress-Treated Rats by Restoring Hippocampal Autophagic Flux
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea with beneficial effects on the impairment in learning and memory. Autophagy is a cellular process that protects neurons from stressful conditions. The present study was designed to investigate whether EGCG can rescue chronic unpredic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231069/ https://www.ncbi.nlm.nih.gov/pubmed/25393306 http://dx.doi.org/10.1371/journal.pone.0112683 |
Sumario: | Epigallocatechin gallate (EGCG) is a major polyphenol in green tea with beneficial effects on the impairment in learning and memory. Autophagy is a cellular process that protects neurons from stressful conditions. The present study was designed to investigate whether EGCG can rescue chronic unpredictable mild stress (CUMS)-induced cognitive impairment in rats and whether its protective effect involves improvement of autophagic flux. As expected, our results showed that CUMS significantly impaired memory performance and inhibited autophagic flux as indicated by elevated LC3-II and p62 protein levels. At the same time, we observed an increased neuronal loss and activated mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6k) signaling in the CA1 regions. Interestingly, chronic treatment with EGCG (25 mg/kg, i.p.) significantly improved those behavioral alterations, attenuated histopathological abnormalities in hippocampal CA1 regions, reduced amyloid beta1–42 (Aβ(1−42)) levels, and restored autophagic flux. However, blocking autophagic flux with chloroquine, an inhibitor of autophagic flux, reversed these effects of EGCG. Taken together, these findings suggest that the impaired autophagy in CA1 regions of CUMS rats may contribute to learning and memory impairment. Therefore, we conclude that EGCG attenuation of CUMS-induced learning and memory impairment may be through rescuing autophagic flux. |
---|