Cargando…
Plectreurys tristis venome: A proteomic and transcriptomic analysis
Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called “plectoxins” (PLTX), a unique acylpolyamine called bis(agmatine)oxalami...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Library Publishing Media
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231235/ https://www.ncbi.nlm.nih.gov/pubmed/25400903 |
_version_ | 1782344409114738688 |
---|---|
author | Zobel-Thropp, Pamela A Thomas, Emily Z David, Cynthia L Breci, Linda A Binford, Greta J |
author_facet | Zobel-Thropp, Pamela A Thomas, Emily Z David, Cynthia L Breci, Linda A Binford, Greta J |
author_sort | Zobel-Thropp, Pamela A |
collection | PubMed |
description | Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called “plectoxins” (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U(1)-PLTX-Pt1a, U(3)-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U(1)- and ω-PLTX families and adding U(4)-through U(9)-PLTX as six new groups. The venom also contains proteins that are homologs of astacin metalloproteases that, combined with venom peptides, make up 94% of components detected in crude venom, while the remaining 6% is a single undescribed protein with unknown function. Other proteins detected in the transcriptome were found to be members of conserved gene families and make up 20% of the transcripts. These include cDNA sequences that match venom proteins from Mesobuthus and Hottentotta scorpions, Loxosceles and Dysdera spiders, and also salivary and secreted peptide sequences from Ixodes, Amblyomma and Rhipicephalus ticks. Finally, we show that crude venom has neurotoxic effects and an effective paralytic dose on crickets of 3.3µg/gm. |
format | Online Article Text |
id | pubmed-4231235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Library Publishing Media |
record_format | MEDLINE/PubMed |
spelling | pubmed-42312352014-11-14 Plectreurys tristis venome: A proteomic and transcriptomic analysis Zobel-Thropp, Pamela A Thomas, Emily Z David, Cynthia L Breci, Linda A Binford, Greta J J Venom Res Research Article Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called “plectoxins” (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U(1)-PLTX-Pt1a, U(3)-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U(1)- and ω-PLTX families and adding U(4)-through U(9)-PLTX as six new groups. The venom also contains proteins that are homologs of astacin metalloproteases that, combined with venom peptides, make up 94% of components detected in crude venom, while the remaining 6% is a single undescribed protein with unknown function. Other proteins detected in the transcriptome were found to be members of conserved gene families and make up 20% of the transcripts. These include cDNA sequences that match venom proteins from Mesobuthus and Hottentotta scorpions, Loxosceles and Dysdera spiders, and also salivary and secreted peptide sequences from Ixodes, Amblyomma and Rhipicephalus ticks. Finally, we show that crude venom has neurotoxic effects and an effective paralytic dose on crickets of 3.3µg/gm. Library Publishing Media 2014-09-20 /pmc/articles/PMC4231235/ /pubmed/25400903 Text en © Copyright The Author(s) http://creativecommons.org/licenses/by-nc/3.0 First Published by Library Publishing Media. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appropriately acknowledged with correct citation details. |
spellingShingle | Research Article Zobel-Thropp, Pamela A Thomas, Emily Z David, Cynthia L Breci, Linda A Binford, Greta J Plectreurys tristis venome: A proteomic and transcriptomic analysis |
title | Plectreurys tristis venome: A proteomic and transcriptomic analysis |
title_full | Plectreurys tristis venome: A proteomic and transcriptomic analysis |
title_fullStr | Plectreurys tristis venome: A proteomic and transcriptomic analysis |
title_full_unstemmed | Plectreurys tristis venome: A proteomic and transcriptomic analysis |
title_short | Plectreurys tristis venome: A proteomic and transcriptomic analysis |
title_sort | plectreurys tristis venome: a proteomic and transcriptomic analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231235/ https://www.ncbi.nlm.nih.gov/pubmed/25400903 |
work_keys_str_mv | AT zobelthropppamelaa plectreurystristisvenomeaproteomicandtranscriptomicanalysis AT thomasemilyz plectreurystristisvenomeaproteomicandtranscriptomicanalysis AT davidcynthial plectreurystristisvenomeaproteomicandtranscriptomicanalysis AT brecilindaa plectreurystristisvenomeaproteomicandtranscriptomicanalysis AT binfordgretaj plectreurystristisvenomeaproteomicandtranscriptomicanalysis |