Cargando…

Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy

Advances in light microscopy have enabled the visualization of DNA in the interphase nucleus with more detail than is visible with conventional light microscopy. The nuclear architecture is assumed to be different in cancer cells compared to normal cells. In this paper we have studied, for the first...

Descripción completa

Detalles Bibliográficos
Autores principales: Righolt, Christiaan H, Guffei, Amanda, Knecht, Hans, Young, Ian T, Stallinga, Sjoerd, van Vliet, Lucas J, Mai, Sabine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Periodicals, Inc 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231252/
https://www.ncbi.nlm.nih.gov/pubmed/24590512
http://dx.doi.org/10.1002/jcb.24800
_version_ 1782344413032218624
author Righolt, Christiaan H
Guffei, Amanda
Knecht, Hans
Young, Ian T
Stallinga, Sjoerd
van Vliet, Lucas J
Mai, Sabine
author_facet Righolt, Christiaan H
Guffei, Amanda
Knecht, Hans
Young, Ian T
Stallinga, Sjoerd
van Vliet, Lucas J
Mai, Sabine
author_sort Righolt, Christiaan H
collection PubMed
description Advances in light microscopy have enabled the visualization of DNA in the interphase nucleus with more detail than is visible with conventional light microscopy. The nuclear architecture is assumed to be different in cancer cells compared to normal cells. In this paper we have studied, for the first time, the organization of nuclear DNA and that of DNA-free space in control lymphocytes, Hodgkin cells and Reed–Sternberg cells using 3D structured illumination microscopy (SIM). We have observed detail in these SIM images that was not observed in conventional widefield images. We have measured the size distribution of the DNA structure using granulometry and noted a significant, progressive increase in the amount of sub-micron structures from control lymphocytes to Hodgkin cells to Reed–Sternberg cells. The DNA-free space changes as well; “holes” in the DNA distribution start to appear in the malignant cells. We have studied whether these “holes” are nucleoli by staining for upstream binding factor (UBF), a protein associated with the nucleolus. We have found that the relative UBF content progressively and significantly decreases—or is absent—in the DNA-free space when measured as either the Pearson correlation coefficient with the DNA-free space or as the number of “holes” that contain UBF. Similar differences exist within the population of Reed–Sternberg cells between binucleated and multinucleated cells with four or more subnuclei. To our knowledge, this is the first study that investigates the changes of the nuclear DNA structure in any disease with superresolution light microscopy. J. Cell. Biochem. 115: 1441–1448, 2014. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
format Online
Article
Text
id pubmed-4231252
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Wiley Periodicals, Inc
record_format MEDLINE/PubMed
spelling pubmed-42312522014-12-15 Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy Righolt, Christiaan H Guffei, Amanda Knecht, Hans Young, Ian T Stallinga, Sjoerd van Vliet, Lucas J Mai, Sabine J Cell Biochem Articles Advances in light microscopy have enabled the visualization of DNA in the interphase nucleus with more detail than is visible with conventional light microscopy. The nuclear architecture is assumed to be different in cancer cells compared to normal cells. In this paper we have studied, for the first time, the organization of nuclear DNA and that of DNA-free space in control lymphocytes, Hodgkin cells and Reed–Sternberg cells using 3D structured illumination microscopy (SIM). We have observed detail in these SIM images that was not observed in conventional widefield images. We have measured the size distribution of the DNA structure using granulometry and noted a significant, progressive increase in the amount of sub-micron structures from control lymphocytes to Hodgkin cells to Reed–Sternberg cells. The DNA-free space changes as well; “holes” in the DNA distribution start to appear in the malignant cells. We have studied whether these “holes” are nucleoli by staining for upstream binding factor (UBF), a protein associated with the nucleolus. We have found that the relative UBF content progressively and significantly decreases—or is absent—in the DNA-free space when measured as either the Pearson correlation coefficient with the DNA-free space or as the number of “holes” that contain UBF. Similar differences exist within the population of Reed–Sternberg cells between binucleated and multinucleated cells with four or more subnuclei. To our knowledge, this is the first study that investigates the changes of the nuclear DNA structure in any disease with superresolution light microscopy. J. Cell. Biochem. 115: 1441–1448, 2014. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Wiley Periodicals, Inc 2014-08 2014-06-17 /pmc/articles/PMC4231252/ /pubmed/24590512 http://dx.doi.org/10.1002/jcb.24800 Text en © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Righolt, Christiaan H
Guffei, Amanda
Knecht, Hans
Young, Ian T
Stallinga, Sjoerd
van Vliet, Lucas J
Mai, Sabine
Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy
title Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy
title_full Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy
title_fullStr Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy
title_full_unstemmed Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy
title_short Differences in Nuclear DNA Organization Between Lymphocytes, Hodgkin and Reed–Sternberg Cells Revealed by Structured Illumination Microscopy
title_sort differences in nuclear dna organization between lymphocytes, hodgkin and reed–sternberg cells revealed by structured illumination microscopy
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231252/
https://www.ncbi.nlm.nih.gov/pubmed/24590512
http://dx.doi.org/10.1002/jcb.24800
work_keys_str_mv AT righoltchristiaanh differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy
AT guffeiamanda differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy
AT knechthans differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy
AT youngiant differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy
AT stallingasjoerd differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy
AT vanvlietlucasj differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy
AT maisabine differencesinnucleardnaorganizationbetweenlymphocyteshodgkinandreedsternbergcellsrevealedbystructuredilluminationmicroscopy