Cargando…
The surface condition effect of Cu(2)O flower/grass-like nanoarchitectures grown on Cu foil and Cu film
Cu(2)O flower/grass-like nanoarchitectures (FGLNAs) were fabricated directly on two category specimens of Cu foils and Cu film using thermal oxidation method. The FGLNAs are approximately 3.5 to 12 μm in size, and their petals are approximately 50 to 950 nm in width. The high compressive stress caus...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231356/ https://www.ncbi.nlm.nih.gov/pubmed/24164860 http://dx.doi.org/10.1186/1556-276X-8-445 |
Sumario: | Cu(2)O flower/grass-like nanoarchitectures (FGLNAs) were fabricated directly on two category specimens of Cu foils and Cu film using thermal oxidation method. The FGLNAs are approximately 3.5 to 12 μm in size, and their petals are approximately 50 to 950 nm in width. The high compressive stress caused by a large oxide volume in the Cu(2)O layer on the specimen surface played an important role in the growth of FGLNAs. The effects of surface conditions, such as the surface stresses, grain size, and surface roughness of Cu foil and Cu film specimens, on the FGLNA growth were discussed in detail. PACS: 81. Materials science; 81.07.-b Nanoscale materials and structures: fabrication and characterization; 81.16.Hc Catalytic methods |
---|