Cargando…

Loss of EP2 Receptor Subtype in Colonic Cells Compromise Epithelial Barrier Integrity by Altering Claudin-4

Prostaglandin E(2) (PGE(2)) is a bioactive lipid mediator that exerts its biological function through interaction with four different subtypes of E-Prostanoid receptor namely EP1, EP2, EP3 and EP4. It has been known that EP2 receptor is differentially over-expressed in the epithelia of inflamed huma...

Descripción completa

Detalles Bibliográficos
Autores principales: Lejeune, Manigandan, Moreau, France, Chadee, Kris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232557/
https://www.ncbi.nlm.nih.gov/pubmed/25396731
http://dx.doi.org/10.1371/journal.pone.0113270
Descripción
Sumario:Prostaglandin E(2) (PGE(2)) is a bioactive lipid mediator that exerts its biological function through interaction with four different subtypes of E-Prostanoid receptor namely EP1, EP2, EP3 and EP4. It has been known that EP2 receptor is differentially over-expressed in the epithelia of inflamed human colonic mucosa. However, the significance of the differential expression in altering epithelial barrier function is not known. In this study, we used Caco-2 cells expressing EP2 receptor, either high (EP2S) or low (EP2A), as a model epithelia and determined the barrier function of these cell monolayers by measuring the trans epithelial resistance (TER). Basal TER of EP2A (but not EP2S) monolayer was significantly lower suggesting a loss of colonic epithelial barrier integrity. In comparison, the TER of wild type Caco-2 was decreased in response to an EP2 receptor specific antagonist (AH-6809) indicating an important role for EP2 receptor in the maintenance of epithelial barrier function. The decrease TER in EP2A monolayer corresponded with a significant loss of the tight junction (TJ) protein claudin-4 without affecting other major TJ proteins. Similarly, EP2 receptor antagonism/siRNA based silencing significantly decreased claudin-4 expression in EP2S cells. Surprisingly, alteration in claudin-4 was not transcriptionally regulated in EP2A cells but rather undergoes increased proteosomal degradation. Moreover, among the TER compromising cytokines examined (IL-8, IL-1β, TNF-α, IFN-γ) only IFN-γ was significantly up regulated in EP2A cells. However, IFN-γ did not significantly decreased claudin-4 expression in Caco-2 cells indicating no role for IFN-γ in degrading claudin-4. We conclude that differential down-regulation of EP2 receptor play a major role in compromising colonic epithelial barrier function by selectively increasing proteosomal degradation of claudin-4.