Cargando…
Genetic Analysis of Loop Sequences in the Let-7 Gene Family Reveal a Relationship between Loop Evolution and Multiple IsomiRs
While mature miRNAs have been widely studied, the terminal loop sequences are rarely examined despite regulating both primary and mature miRNA functions. Herein, we attempted to understand the evolutionary pattern of loop sequences by analyzing loops in the let-7 gene family. Compared to the stable...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232593/ https://www.ncbi.nlm.nih.gov/pubmed/25397967 http://dx.doi.org/10.1371/journal.pone.0113042 |
Sumario: | While mature miRNAs have been widely studied, the terminal loop sequences are rarely examined despite regulating both primary and mature miRNA functions. Herein, we attempted to understand the evolutionary pattern of loop sequences by analyzing loops in the let-7 gene family. Compared to the stable miRNA length distributions seen in most metazoans, higher metazoan species exhibit a longer length distribution. Examination of these loop sequence length distributions, in addition to phylogenetic tree construction, implicated loop sequences as the main evolutionary drivers in miRNA genes. Moreover, loops from relevant clustered miRNA gene families showed varying length distributions and higher levels of nucleotide divergence, even between homologous pre-miRNA loops. Furthermore, we found that specific nucleotides were dominantly distributed in the 5′ and 3′ terminal loop ends, which may contribute to the relatively precise cleavage that leads to a stable isomiR expression profile. Overall, this study provides further insight into miRNA processing and maturation and further enriches our understanding of miRNA biogenesis. |
---|