Cargando…
Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling
Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficie...
Autor principal: | Tiğdemir, Mesut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232605/ https://www.ncbi.nlm.nih.gov/pubmed/25397962 http://dx.doi.org/10.1371/journal.pone.0113226 |
Ejemplares similares
-
Evaluation of Design Procedure and Performance of Continuously Reinforced Concrete Pavement According to AASHTO Design Methods
por: Moharekpour, Milad, et al.
Publicado: (2022) -
Generation of traffic input for flexible pavement design
por: Richard, Fogue, et al.
Publicado: (2023) -
Principles of pavement design /
por: Yoder, Eldon J. (Eldon Joseph)
Publicado: (1975) -
Pavement Disease Detection through Improved YOLOv5s Neural Network
por: Chu, Yinze, et al.
Publicado: (2022) -
Integrating Pavement Sensing Data for Pavement Condition Evaluation
por: Gkyrtis, Konstantinos, et al.
Publicado: (2021)