Cargando…

Insights into the skeletal muscle characteristics of three southern African antelope species

Skeletal muscle fibre type, cross-sectional area (CSA), maximum enzyme capacities and fibre oxidative capacities were investigated in three southern African antelope species. Muscle samples from blesbok (Damaliscus pygargus phillipsi), mountain reedbuck (Redunca fulvorufula) and greater kudu (Tragel...

Descripción completa

Detalles Bibliográficos
Autor principal: Kohn, Tertius Abraham
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232761/
https://www.ncbi.nlm.nih.gov/pubmed/25326514
http://dx.doi.org/10.1242/bio.20149241
Descripción
Sumario:Skeletal muscle fibre type, cross-sectional area (CSA), maximum enzyme capacities and fibre oxidative capacities were investigated in three southern African antelope species. Muscle samples from blesbok (Damaliscus pygargus phillipsi), mountain reedbuck (Redunca fulvorufula) and greater kudu (Tragelaphus strepsiceros) were collected post mortem from the Vastus lateralis and analysed for myosin heavy chain (MHC) isoform content, citrate synthase (CS), 3-hydroxyacyl Co A dehydrogenase (3-HAD), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and creatine kinase (CK) activities. Histochemistry and immunohistochemistry were performed to determine relative fibre oxidative capacity, fibre type and cross-sectional area (CSA). Type IIX fibres were the most abundant fibre type in all three species, ranging from 43 to 57%. Kudu had less type IIX fibres than mountain reedbuck and blesbok (P<0.05), values confirmed by their respective MHC isoform content. Blesbok had the smallest fibres, followed by mountain reedbuck and finally kudu (P<0.001). Overall, all three species had high oxidative and glycolytic capacities, but species differences were found. Kudu had the lowest CS activity, followed by blesbok and mountain reedbuck, but the highest PFK, LDH and CK activities. This study confirmed large variation in oxidative capacities within a single fibre type, as well as overlap between the fibre types with no distinct differences between the three species. The fibre type profile of each species is discussed and confirms some of their physical attributes and capabilities.